首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SNRPN gene is known to be expressed exclusively from the paternal allele and to map to the critical region for the neurobehavioral disorder, Prader-Willi syndrome (PWS). As a means to investigate the mechanism of imprinting for the SNRPN gene, we have sought to recapitulate the imprinted expression of the endogenous gene. Using an 85-kb murine Snrpn clone, containing 33 kb of 5′ and 30 kb of 3′ flanking DNA, we obtained two intact transgenic lines. One line, containing two copies of the Snrpn transgene, recapitulated the imprinted expression pattern of the endogenous locus, whereas the other transgenic line, containing a single copy, was expressed upon both maternal and paternal inheritance. This suggests that a 6.6-kb region of maternal-specific DNA methylation that we have identified may be sufficient to confer imprinted expression, but not in a copy-number independent manner. Finally, we produced five lines of transgenic mice using a 76-kb human SNRPN clone containing 45 kb and 7 kb of 5′ and 3′ flanking DNA, respectively. We found all the lines were expressed upon both maternal and paternal inheritance, regardless of copy number, suggesting that the imprinting machinery in mouse and human may have diverged. Received: 11 November 1998 / Accepted: 29 January 1999  相似文献   

2.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

3.
Peg3 is an imprinted gene exclusively expressed from the paternal allele. It encodes a C2H2 type zinc-finger protein and is involved in maternal behavior. It is important for TNF-NFkB signaling and p53-mediated apoptosis. To investigate the imprinting mechanism and gene expression of Peg3 and its neighboring gene(s), we used a 120 kb Peg3-containing BAC clone to generate transgenic mice. The BAC clone contains 20 kb of 5 and 80 kb of 3 flanking DNA, and we obtained three transgenic lines. In one of the lines harboring one copy of the transgene, Peg3 was imprinted properly. In the other two lines, Peg3 was expressed upon both maternal and paternal transmission. Imprinted expression was linked to the differential methylation of a region (DMR) upstream of the Peg3 gene. A second, maternally expressed gene, Zim1, present on the transgene was expressed irrespective of parental inheritance in all lines. These data suggest that, similar to other imprinted genes within domains, Peg3 and Zim1 are regulated by one or more elements lying at a distance from the genes. The imprinting of Peg3 seen in one line may reflect the presence of a responder sequence. Concerning the expression of the Peg3 transgene, we detected appropriate expression in the adult brain. However, this was not sufficient to rescue the maternal behavior phenotype seen in Peg3 deficient animals.  相似文献   

4.
The imprinted mouse H19 gene exhibits maternal allele-specific expression and paternal allele-specific hypermethylation. We previously demonstrated that a 14-kb H19 minitransgene possessing 5' differentially methylated sequence recapitulates the endogenous H19 imprinting pattern when present as high-copy arrays. To investigate the minimal sequences that are sufficient for H19 transgene imprinting, we have tested new transgenes in mice. While transgenes harboring limited or no 3' H19 sequence indicate that multiple elements within the 8-kb 3' fragment are required for appropriate imprinting, transgenes incorporating 1.7 kb of additional 5' sequence mimic the endogenous H19 pattern, including proper imprinting of low-copy arrays. One of these imprinted lines had a single 15.7-kb transgene integrant. This is the smallest H19 transgene identified thus far to display imprinting properties characteristic of the endogenous gene, suggesting that all cis-acting elements required for H19 imprinting in endodermal tissues reside within the 15.7-kb transgenic sequence.  相似文献   

5.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

6.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

7.
 The molecular mechanism leading to the imprinted expression of genes is poorly understood. While no conserved cis-acting elements have been identified within the known loci, many imprinted genes are located near directly repetitive sequence elements, suggesting that such repeats might play a role in imprinted gene expression. The maternally expressed mouse H19 gene is located approximately 1.5 kb downstream from a 461-bp G-rich repetitive element. We have used a transgenic model to investigate whether this element is essential for H19 imprinting. Previous results demonstrated that a transgene, which contains 14 kb of H19 sequence, exhibits parent-of-origin specific expression and methylation analogous to the endogenous H19 imprinting pattern. Here, we have generated transgenes lacking the G-rich repeat. One transgene, containing a deletion of the G-rich repetitive element but which includes an additional 1.7 kb of 5’H19 sequence, is imprinted similarly to the endogenous H19 gene. To determine whether the G-rich repeat is conserved in other imprinted mammalian H19 homologues, additional 5’ flanking sequences were cloned from the rat and human. This element is conserved in the rat but not in human DNA. These results suggest that the 461-bp G-rich repetitive element is not essential for H19 imprinting. Received: 26 August 1998 / Accepted: 14 December 1998  相似文献   

8.
For most imprinted genes, a difference in expression between the maternal and paternal alleles is associated with a corresponding difference in DNA methylation that is localized to a differentially methylated domain (DMD). Removal of a gene's DMD leads to a loss of imprinting. These observations suggest that DMDs have a determinative role in genomic imprinting. To examine this possibility, we introduced sequences from the DMDs of the imprinted Igf2r, H19, and Snrpn genes into a nonimprinted derivative of the normally imprinted RSVIgmyc transgene, created by excising its own DMD. Hybrid transgenes with sequences from the Igf2r DMD2 were consistently imprinted, with the maternal allele being more methylated than the paternal allele. Only the repeated sequences within DMD2 were required for imprinting these transgenes. Hybrid transgenes containing H19 and Snrpn DMD sequences and ones containing sequences from the long terminal repeat of a murine intracisternal A particle retrotransposon were not imprinted. The Igf2r hybrid transgenes are comprised entirely of mouse genomic DNA and behave as endogenous imprinted genes in inbred wild-type and mutant mouse strains. These types of hybrid transgenes can be used to elucidate the functions of DMD sequences in genomic imprinting.  相似文献   

9.
Landmark features of imprinted genes are differentially methylated domains (DMDs), in which one parental allele is methylated on CpG dinucleotides and the opposite allele is unmethylated. Genetic experiments in the mouse have shown that DMDs are required for the parent-specific expression of linked clusters of imprinted genes. To understand the mechanism whereby the differential methylation is established and maintained, we analyzed a series of transgenes containing DMD sequences and showed that imperfect tandem repeats from DMDs associated with the Snurf/Snrpn, Kcnq1, and Igf2r gene clusters govern transgene imprinting. For the Igf2r DMD the minimal imprinting signal is two unit copies of the tandem repeat. This imprinted transgene behaves identically to endogenous imprinted genes in Dnmt1o and Dnmt3L mutant mouse backgrounds. The primary function of the imprinting signal within the transgene DMD is to maintain, during embryogenesis and a critical period of genomic reprogramming, parent-specific DNA methylation states established in the germ line. This work advances our understanding of the imprinting mechanism by defining a genomic signal that dependably perpetuates an epigenetic state during postzygotic development.  相似文献   

10.
Genomic imprinting of the insulin-like growth factor 2 gene in sheep   总被引:5,自引:0,他引:5  
A number of genes in the human and mouse genomes are subject to genomic imprinting, with selective inactivation of one allele of a gene in a parent-of-origin specific manner. One of the first imprinted genes identified was the Insulin-like Growth Factor 2 gene (IGF2), which promotes growth of the fetus and is expressed from only the paternal allele in most tissues in both the mouse and human. The aim of this study was to establish the imprinting status of IGF2 in sheep (Ovis aries). Sheep provide an interesting model to study imprinting, owing to differences in their placental development and the fact that they have been subject to strong artificial selection for various production traits. We report the identification of a length polymorphism in the transcribed 3′-untranslated region of the ovine IGF2 gene. This polymorphism was used to map IGF2 to sheep Chromosome (Chr) 21 and demonstrate that IGF2 is indeed imprinted in sheep, being expressed from the paternal allele. We also report that the developmental switch from imprinted IGF2 expression in the fetal liver to biallelic IGF2 expression in the adult liver, which occurs in the human but not mouse, also occurs in sheep. Differences in male- and female-specific recombination values reported around the IGF2 locus in the human were also observed around the ovine IGF2 locus. The techniques developed in this study will enable the imprinting status of IGF2 to be assessed in a variety of tissues and stages of development in normal sheep. Received: 3 October 1998 / Accepted 29 January 1999  相似文献   

11.
Genomic imprinting is an epigenetic modification of the gamete or zygote leading to parental origin-specific differential expression of the two alleles of a gene in somatic cells of the offspring. We previously reported that the human KVLQT1 gene is imprinted and disrupted in patients with germline balanced chromosomal rearrangements and Beckwith–Wiedemann syndrome. In human, the gene is imprinted in most fetal tissues except the heart, and KVLQT1 is part of a 1-Mb cluster of imprinted genes on human chromosome 11p15.5. We sought to determine whether the mouse Kvlqt1 gene is imprinted, by performing interspecific crosses of 129/SvEv mice with CAST/Ei(Mus musculus castaneus). We identified a transcribed polymorphism that distinguishes the two parental alleles in F1offspring. Examination of embryonic, neonatal, and postnatal tissues revealed that Kvlqt1 is imprinted in mouse early embryos, in both female 129 × male CS and female CS × male 129 offspring, with preferential expression of the maternal allele, like the human homologue. Surprisingly, imprinting was developmentally relaxed, and the developmental stage and tissue specificity of relaxation of imprinting was strain-dependent. To our knowledge, this is the first example of an endogenous gene that shows strain-dependent developmental relaxation of imprinting.  相似文献   

12.
13.
Snrpn is known to be abundantly expressed in rodent brain and heart, and in two separate studies with neonatal mouse brain it has been shown to be maternally imprinted, that is, the maternal allele is normally repressed. We now provide evidence on the expression profile and imprinting status of Snrpn throughout development. Using RT-PCR, we have established that Snrpn is further expressed at low levels in lung, liver, spleen, kidney, skeletal muscle, and gonads. Moreover, using mice with only maternal copies of Snrpn (maternal duplication for the chromosome region involved and parthenogenotes), we have shown that the gene is imprinted in all of these tissues and, generally, from the time the gene is first expressed at 7.5 days gestation. In contrast to the findings made with the imprinted genes, Igf2, Ins1, and Ins2, there is no evidence of tissue-specific imprinting in the embryo with Snrpn. Nor, as found with Igf2 and Igf2r, is there evidence of a window of biallelic expression between the germ line imprint and the time of gene repression. The absence of Snrpn expression in early embryos contrasts with the findings in ES cells.  相似文献   

14.
To investigate the ability of 1.8 kb or 3.1 kb bovine beta-casein promoter sequences for the expression regulation of transgene in vivo, transgenic mice were produced with human type II collagen gene fused to 1.8 kb and 3.1 kb of bovine beta-casein promoter by DNA microinjection. Five and three transgenic founder mice were produced using transgene constructs with 1.8 kb and 3.1 kb of bovine beta-casein promoters respectively. Founder mice were outbred with the wild type to produce F1 and F2 progenies. Total RNAs were extracted from four tissues (mammary gland, liver, kidney, and muscle) of female F1 transgenic mice of each transgenic line following parturition. RT-PCR and Northern blot analysis revealed that the expression level of transgene was variable among the transgenic lines, but transgenic mice containing 1.8 kb of promoter sequences exhibited more leaky expression of transgene in other tissues compared to those with 3.1 kb promoter. Moreover, Western blot analysis of transgenic mouse milk showed that human type II collagen proteins secreted into the milk of lactating transgenic mice contained 1.8 kb and 3.1 kb of bovine beta-casein promoter. These results suggest that promoter sequences of 3.1 kb bovine beta-casein gene can be used for induction of mammary gland-specific expression of transgenes in transgenic animals.  相似文献   

15.
Imprinted maternal-allele-specific expression of the mouse insulin-like growth-factor type 2 receptor (Igf2r) gene depends on a 3.7-kb element named region 2, located in the second intron of the gene. Region 2 carries a maternal-allele-specific methylation imprint and contains an imprinted CpG island promoter (Air) that expresses a noncoding antisense RNA from the paternal inherited allele only. Here, we use transgenes to test the minimal requirements for imprinting of Air and to test if the action of region 2 is restricted to Igf2r. Transgenes up to 9 kb with Air as a single promoter are expressed but not imprinted. When coupled to the Igf2r CpG island promoter on a 44-kb transgene, Air was imprinted in one of three lines. However, Air on a 4.6-kb fragment is also imprinted in 2 of 14 lines when inserted in an intron of an adenine phosphoribosyltransferase (Aprt) transgene, and in one line, the imprinted methylation and expression of Air have been transferred onto the Aprt CpG island promoter. These data suggest that a dual CpG island promoter setting may facilitate Air imprinting as a short transgene and also show that Air can transfer imprinting onto other genes. However, for reliable Air imprinting, elements are necessary that are located outside a 44-kb region spanning the Air-Igf2r promoters.  相似文献   

16.
17.
18.

Background  

Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice.  相似文献   

19.

Background  

Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals.  相似文献   

20.
The inheritance of gametic methylation patterns is a critical event in the imprinting of genes. In the case of the imprinted RSVIgmyc transgene, the methylation pattern in the unfertilized egg is maintained by the early mouse embryo, whereas the sperm’s methylation pattern is lost in the early embryo. To investigate the cis-acting requirements for this preimplantation stage of genomic imprinting, we examined the fate of different RSVIgmyc methylation patterns, preimposed on RSVIgmyc and introduced into the mouse zygote by pronuclear injection. RSVIgmyc methylation patterns with a low percentage of methylated CpG dinucleotides, generated by using bacterial cytosine methylases with four-base recognition sequences, were lost in the early embryo. In contrast, methylation was maintained when all CpG dinucleotides were methylated with the bacterial SssI (CpG) methylase. This singular maintenance of RSVIgmyc methylation preimposed with SssI methylase appears to be specific to the early, undifferentiated embryo; differentiated NIH 3T3 fibroblasts transfected with methylated versions of RSVIgmyc maintained all methylation patterns, independent of the level of preimposed methylation. The methylation pattern of the RSVIgmyc allele in adult founder transgenic mice that was produced by pronuclear injection of an SssI-methylated construct could not be distinguished from the maternal RSVIgmyc methylation pattern. Thus, a highly methylated allele in adult mice, normally generated by transmission of RSVIgmyc through the female germ line, was also produced in founder transgenic mice by bypassing gametogenesis and introducing a highly methylated RSVIgmyc into the mouse zygote. These results suggest that RSVIgmyc methylation itself is a cis-acting signal for the preimplantation maintenance of the oocyte’s methylation pattern and, therefore, a cis-acting signal for RSVIgmyc imprinting. Furthermore, our inability to identify a sequence element within RSVIgmyc that was absolutely required for its imprinting suggests that the extent of RSVIgmyc methylation, rather than a particular pattern of methylation, is the principal feature of this imprinting signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号