首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells of the electric organ, called electrocytes, of the weakly electric fish Sternopygus macrurus derive from the fusion of mature fast muscle fibers that subsequently disassemble and downregulate their sarcomeric components. Previously, we showed a reversal of the differentiated state of electrocytes to that of their muscle fiber precursors when neural input is eliminated. The dependence of the mature electrocyte phenotype on neural input led us to test the hypothesis that innervation is also critical during formation of electrocytes. We used immunohistochemical analyses to examine the regeneration of skeletal muscle and electric organ in the presence or absence of innervation. We found that blastema formation is a nerve-dependent process because regeneration was minimal when tail amputation and denervation were performed at the same time. Denervation at the onset of myogenesis resulted in the differentiation of both fast and slow muscle fibers. These were fewer in number, but in a spatial distribution similar to controls. However, in the absence of innervation, fast muscle fibers did not progress beyond the formation of closely apposed clusters, suggesting that innervation is required for their fusion and subsequent transdifferentiation into electrocytes. This study contributes further to our knowledge of the influence of innervation on cell differentiation in the myogenic lineage.  相似文献   

2.
The pacemaker nucleus of Gymnotus carapo contains two types of neurons: pacemaker cells which set up the frequency of the electric organ discharge (EOD) and relay cells which convey the command signal to the spinal cord. Direct activation of a single relay cell provides enough excitation to discharge a pool of spinal electromotor neurons and electrocytes, generating a small EOD (unit EOD). Different relay cells generate unit EODs of variable size and waveform, indicating the involvement of different groups of electrocytes. A special technique of EOD recording (multiple air-gap) was combined with intracellular stimulation of relay cells to study the spatial distribution within the electric organ (EO) of the command signal arising from different relay cells. Three types of relay cells could be identified: type I commanding the rostral 10% of the EO, type II which distribute their command all along the EO and type III driving the caudal 30%. Waveform analysis of unit EODs indicates that doubly innervated electrocytes which are the most relevant for attaining the specific EOD waveform, receive a favored command from the pacemaker nucleus.Abbreviations CV conduction velocity - EMF electromotive force - EMN electromotor neuron - EO electric organ - EOD electric organ discharge - PN pacemaker nucleus - uEOD unit electric organ discharge  相似文献   

3.
Rhamphichthys rostratus (L.) emits brief pulses (2 ms) repeated very regularly at 50 Hz. The electric organ shows a heterogeneous distribution of the electrocyte tubes and the occurrence of three electrocyte types (caudally innervated, rostrally innervated and marginallycaudally innervated). In the sub-opercular region the electric organ consists of a pair of tubes containing only caudally innervated electrocytes. At the abdominal region the EO consists of three pairs of tubes. Each pair contains one of the described electrocyte types. The number of electrocyte tubes increases toward the tail to reach nine or ten pairs in the most caudal segments. In the intermediate region most tubes contain doubly innervated electrocytes except the ventral pair that contains caudally innervated electrocytes. The caudal 25% contains exclusively caudally innervated electrocytes. The electric organ discharge consists of five wave components (V1 to V5). Electrophysiological data are consistent with the hypothesis that V1 results from the activity of the rostral faces of rostrally innervated electrocytes. V2 results from the activities of rostral faces of marginally-caudally innervated electrocytes while V3 results from the activities of caudal faces of most electrocytes. Curarization experiments demonstrated that V4 and V5 result from action potential invasion and are not directly elicited by neural activity.Abbreviations AEN1 anterior electromotor nerve 1 - AEN2 anterior electromotor nerve 2 - BMB boraxic methylene blue - CIE caudally innervated electrocytes - EMF electromotive force - EO electric organ - EOD electric organ discharge - I current amplitude - MCIE marginally-caudally innervated electrocytes - MT medial tubes - PEN posterior electromotor nerve - R n internal impedance - RIE rostrally innervated electrocytes - Rl load resistor - SAT short abdominal tubes - V voltage amplitude  相似文献   

4.
5.
The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells subsequently restore the original tissue.  相似文献   

6.
Summary The electric organ (EO) ofGymnotus carapo was studied using different neurohistological techniques including conventional electron microscopy. The electric tissue extends along the fish body from the pectoral girdle to the tip of the tail, constituting a single, undivided organ. However, taking into account the number, arrangement, and innervation of the electrocytes, it is possible to divide the EO into three different portions. The more rostral portion is included within the ventral wall of the abdominal cavity. It consists of singly and doubly innervated electrocytes arranged in two rows at each side of the midline. Innervation of this zone is supplied by the first 5–7 segmental nerves and by the anterior electromotor nerves. Segmental nerves terminate on the rostral faces of doubly innervated electrocytes; axons stemming from the anterior electromotor nerves end on the caudal faces of both doubly and singly innervated electrocytes. There is an intermediate body-tail region in which the electrocytes are arranged in four dorsoventral tubes (tubes 1 to 4) on each side of the midline. In this zone, doubly innervated electrocytes (confined within tube 1) coexist together with singly innervated ones, receiving nerve terminals on their caudal faces (tubes 2, 3, and 4). The innervation characteristics appear modified at more distal portions of the tail where the doubly innervated electrocytes of tube 1 are replaced by singly innervated units. The most distal portion of the EO (approximately its terminal 30%) consists of numerous, homogeneously innervated electrocytes with nerve endings distributed exclusively on their caudal faces. Nerve supply to the intermediate and distal regions derives from the posterior electromotor nerves (PENs) which appear as well-defined anatomical entities beyond the level of metamere XXVII. At the bodytail and more distal regions the innervation pattern of the EO is particularly complex. Thin nerve trunks arise from the PENs and project ventrally toward the electrocyte tubes. Before reaching the electric tissue the electromotor axons branch frequently. Our anatomical studies indicate that the EO is heterogeneous, a feature consistent with most recent electrophysiological and biophysical experiments.Abbreviations AEN anterior electromotor nerve - EMN electromotoneurons - EO electric organ - EOD electric organ discharge - LLN lateral line nerve - PEN posterior electromotor nerve  相似文献   

7.
Almost all fish electric organs (EO) developed from the skeletal muscles or from its embryonic rudiments. The only exception is the definite (in contrast to larval) EO of Apteronotidae, formed by motoneurons, whose loss of relation with muscles is secondary. The main feature of all EO of the muscle genesis is cooperative morphological and electrophysiological polarity of their electrocyte cells anterioposteriorly or (in Torpedo, Uranoscopus) of the dorso-ventral axes of the body. In particular, for the EO of muscular origin, unilateral asymmetric innervation of electrocytes by electromotoneurons is characteristic. Such innervation is a prerequisite condition for the summation of electric discharges. It is one of the main distinctions of EO from definitive skeletal muscles. However, in the emryogenesis of all vertebrates the initial innervation of muscle rudiments by the so-called pioneer motoneurons occurs. In teleosts (according to data on Brachidanio rerio available) extending to every myotome are outgrowths of three pioneer motoneurons referred to after their position in the nerotubule as "rostral", "medial" and "caudal". The former two innervate dorsally with the dorsal compartment of the myotome. The third approaches the ventral compartment of the same myotome caudally. In the gymnotic fish the innervation of EO formed from the axial skeletal muscles retains the same nature. The electrocytes of EO from the dorsal and ventral compartments of the myotome, are approached by electromotoneurons, respectively, rostrally and caudally. In compartments, the antipolarity of the innervation of the dorsal and ventral EO compartments leads to a paradoxical effect of generation of anti-polar pulses. The summation of these pulses creates a very short difference electric charge. In Mormyridae the antipolarity of the innervation of the rostral and ventral compartments of EO formed from the axial muscle is not pronounced. However, electroneurons resemble pioneer motoneurons by the following characters: the large size of the bodies and their localization near the central tube, absence of dendrities, electrosynaptic connection, polar (asymmetrical) pattern of electrocyte innervation. Outside EO, the cooperative polarity of the cells is only characteristic of epithelia, particularly, ciliated. At the same time, in some electric fish, the electrogeneratory tissue is similar to epithelium in a number of morphological characters, or the genes expressed in it show the gene of keratin AE-1, typical of epithelia. The above gives grounds to believe that EO of muscle origin are a product of fixation and aggravation by natural selection of hereditary anomalies, manifested in the recovery or in the retaining of the embryonic (i.e., polar nature) of the efferent innervation of some parts of skeletal muscles. Another distinction of EO from the muscles appears to lie in the expression of some individual components of the gene epithelial complex. A method is proposed for electromyographic recording of such anomalies and molecular-genetic approachers to analysis of their nature. The causes of the absence of EO epithelial genesis are discussed and also of the fact that these organs developed only in the evolution of fish.  相似文献   

8.
After tail amputation in lizard, a regenerative response is elicited leading to the formation of a new tail. The stimulation of the proliferation process may involve the proto‐oncogene c‐myc. The immunocytochemical analysis detects the c‐myc protein few days after wound in free cells accumulating over the injured tissues of the tail stump. Western blot detects a protein band at 68–70 kDa that is more intense in the regenerating blastema than in normal tail tissues. Nuclei positive for the c‐myc protein are seen in mesenchymal‐like cells located among muscles, connectives and fat tissues of the tail stump 4 days postamputation. Proliferating cells labelled for 5BrdU are seen at 4 days postamputation and are sparse in the mesenchyme of the regenerating blastema formed at 12 days postamputation. Fine immunolocalization of the c‐myc protein shows it is mainly located over euchromatin or poorly condensed chromatin to indicate gene activation. The study correlates the detection of the c‐myc protein with activation of cell division in the injured tissues leading to the formation of the regenerative blastema. The lizard c‐myc protein probably activates a controlled proliferation process through a mechanism that can give information on the uncontrolled process occurring in cancer.  相似文献   

9.
In order to further our understanding of the evolution of electric organs in the Neotropical gymnotiform fish, we studied the ontogeny of the electric organs in eight species. In Eigenmannia virescens, Sternopygus macrurus, and Apteronotus leptorhynchus the earliest electrocytes are located between muscle fibres of the hypaxial muscle (Type A electrocytes). We present arguments that these Type A electrocytes represent the plesiomorphic condition. In S. macrurus, in addition to the electrocytes in the hypaxial muscle, additional electrocytes were found in the epaxial muscle. In A. leptorhynchus a neurogenic organ develops later during ontogeny in the medial part of the hypaxial muscle in addition to the early myogenic organ. In E. virescens the early electrocytes in hypaxial muscle will degenerate later during ontogeny, and this organ will be replaced functionally by electrocytes located in the caudal appendage and below the hypaxial muscle. In Electrophorus electricus, two Gymnotus species, Rhamphichthys sp., and Brachyhypopomus pinnicaudatus the first electrocytes were found below the hypaxial muscle (Type B electrocytes); they are assumed to be the more derived stage. In R. sp., and B. pinnicaudatus the electrocytes of Type B developed directly into the adult organ. In the two Gymnotus ssp. electrocytes were also found in the medial part of the organ in-between muscle fibres of the hypaxial muscle. In E. electricus a germinative zone was observed to separate from the ventral myotome. This zone is generating electrocytes continuously so that, as a consequence, the relative proportion of electric organ to muscle increases greatly. In 45 mm long E. electricus a separation of low voltage orientation pulses and high voltage trains of pulses (shocks) was observed. A first appearance of Hunter’s organ was found in 140 mm specimens of E. electricus. The first discharges of all species studied were head- positive, with the exception of R. sp., which produced a triphasic discharge, its main component, however, being head-positive. The arguments presented indicate that the Type A electrocytes found in E. virescens, S. macrurus, and A. leptorhynchus would represent the plesiomorphic condition. On the basis of the evidence regarding the formation, cytological appearance, and anatomical location, as well as the early electrical recordings, we would hypothesise that during the evolution of gymnotiforms wave type species evolved first, and in a second step pulse type species followed. This view, however, is corroborated by only some phylogenetic hypotheses.  相似文献   

10.
The migration of dermal cells during blastema formation in axolotls   总被引:1,自引:0,他引:1  
Using the diploid/triploid cell marker in the axolotl (Ambystoma mexicanum) we have examined the movement of cells from the dermis into the early limb blastema. Cells of dermal origin begin to migrate beneath the wound epithelium at about 5 days postamputation, and by 10 days they are widely distributed across the amputation surface. By 15 days, a dense accumulation of blastema cells is present beneath the apical cap, and these cells are preferentially oriented in a circumferential direction. These results are discussed in relation to previous studies showing that the progeny of dermal cells become widely distributed during regeneration, and that cells of dermal origin are a major source of blastema cells. The results are also discussed in relation to ideas about how growth and patterning of the new appendage occur.  相似文献   

11.
Electric fish communicate with electric organ (EO) discharges (EODs) that are sexually dimorphic, hormone-sensitive, and often individually distinct. The cells of the EO (electrocytes) of the weakly electric fish Sternopygus possess delayed rectifying K+ currents that systematically vary in their activation and deactivation kinetics, and this precise variation in K+ current kinetics helps shape sex and individual differences in the EOD. Because members of the Kv1 subfamily produce delayed rectifier currents, we cloned a number of genes in the Kv1 subfamily from the EO of Sternopygus. Using our sequences and those from genome databases, we found that in teleost fish Kv1.1 and Kv1.2 exist as duplicate pairs (Kv1.1a&b, Kv1.2a&b) whereas Kv1.3 does not. Using real-time quantitative RT-PCR, we found that Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO is higher in high EOD frequency females (which have fast EO K+ currents) than in low EOD frequency males (which have slow EO K+ currents). Systemic treatment with dihydrotestosterone decreased Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO, whereas treatment with human chorionic gonadotropin (hCG) increased Kv1.2a but not Kv1.1a or Kv1.2b expression in the EO. Thus, systematic variation in the ratios of Kv1 channels expressed in the EO is correlated with individual differences in and sexual dimorphism of a communication signal.  相似文献   

12.
Electric organs of Psammobatis extenta (Rajiformes) electric fish derive from myoblasts of the caudal region [16]. Here we study the presence of muscle proteins, actin and the actin-binding proteins, α-actinin and tropomyosin, in the electrocytes by means of biochemical approaches, scanning electron microscopy and immunocytochemical methods. NBD-phallacidin is employed to detect the filamentous form of actin (F-actin). Immunoblots of actin and α-actinin from P. extenta skeletal and smooth muscle show that the electric organ forms of actin and α-actinin correspond to muscle types. Scanning electron microscopy shows that P. extenta electrocytes are highly polarized cells, semicircular in shape, with an anterior, concave innervated face and a posterior, convex, non-innervated face. The immunofluorescence patterns of α-actinin and tropomyosin distribution are similar to those of actin, in that these epitopes appear to occur throughout the entire electrocyte cytoplasm. F-actin, as revealed by NBD-phallacidin fluorescence, was also found throughout the cytoplasm. This is the first time that evidence is presented to demonstrate the existence of muscle actin in this weak electric fish species electrocyte. The close evolutionary connection to that of muscle cells is discussed.  相似文献   

13.
Summary Hypopomus occidentalis is a weakly electric Gymnotiform fish with a pulse-type electric organ discharge (EOD).Hypopomus used in this study were taken from one of the northernmost boundaries of this species, the Atlantic drainage of Panama where the animals breed at the beginning of the dry season (December). In normal breeding populations,Hypopomus occidentalis exhibit a sexual dimorphism in EOD and morphology. Mature males are large with a broad tail and have an EOD characterized by a low peak power frequency. Females and immature males are smaller, having a slender tail and EODs with higher peak power frequencies (Fig. 1). This study describes differences in the EOD and electric organ morphology between breeding field populations of male and femaleHypopomus. Changes in physiology, morphology and EOD shape which may accompany this seasonal change were examined in steroid injected fish, using standard histological and physiological techniques.A group of females were injected with hormones (5-dihydrotestosterone (DHT), estrogen or saline) to assess changes in their morphology and EOD. Animals treated with DHT developed characteristics which mimicked the sexually dimorphic characteristics of a male, while the other groups did not (see Fig. 5). Tissue from the tails of breeding males and females, and females treated with DHT, were sampled to measure the size of the electrocytes in the tail. The broader tail of males and DHT-females is composed of large electrocytes, whereas the slender tail of normal females is composed of smaller electrocytes. Therefore, the increase in the tail width in the female DHT group is caused by an enlargement of the electrocytes in this area.Intracellular recordings from the electrocytes of saline and DHT injected females show a difference in the responses of the rostral faces of the electrocytes from the two groups, which reflect the differences in their EODs. Saline-treated animals had symmetrical EODs (the first and second phase of the EOD were equal in duration and amplitude), while the physiological responses from each face of the electrocytes yielded responses that were similarly equal in duration and amplitude. DHT-treated animals had asymmetrical EODs (the first phase of the EOD was similar to that of saline treated fish and larger in amplitude and shorter in duration than the second phase) and the physiological responses of the electrocytes reflected this asymmetry. The differential recordings across the caudal face were similar to those from saline treated fish, while the responses from the rostral face were longer in duration and smaller in amplitude.These data suggest that the effects of androgens underlie the changes in single electrocytes which produce the sexually dimorphic signals and morphology present in natural breeding populations ofHypopomus occidentalis.  相似文献   

14.
Medaka is an attractive model to study epimorphic regeneration. The fins have remarkable regenerative capacity and are replaced about 14 days after amputation. The formation of blastema, a mass of undifferentiated cells, is essential for regeneration; however, the molecular mechanisms are incompletely defined. To identify the genes required for fin regeneration, especially for blastema formation, we constructed cDNA libraries from fin regenerates at 3 days postamputation and 10 days postamputation. A total of 16,866 expression sequence tags (ESTs) were sequenced and subjected to BLASTX analysis. The result revealed that about 60% of them showed strong matches to previously identified proteins, and major signaling molecules related to development, including FGF, BMP, Wnt, Notch/Delta, and Ephrin/Eph signaling pathways were isolated. To identify novel genes that showed specific expression during fin regeneration, cDNA microarray was generated based on 2900 independent ESTs from each library which had no sequence similarity to known proteins. We obtained 6 candidate genes associated with blastema formation by gene expression pattern screening in competitive hybridization analyses and in situ hybridization. Olrfe16d23 and olrfe14k04 were expressed only in early regenerating stages when blastema formation was induced. The expression of olrf5n23, which encodes a novel signal peptide, was detected in wound epidermis throughout regeneration. Olrfe23l22, olrfe20n22, and olrfe24i02 were expressed notably in the blastema region. Our study has thus identified the gene expression profiles and some novel candidate genes to facilitate elucidation of the molecular mechanisms of fin regeneration.  相似文献   

15.
After amputation, the tail of lizards regenerates while the limb forms a short scarring outgrowth. Using phospho‐histone‐H3 immunohistochemistry the mitotic activity of limb tissues at 12–25 days after amputation has been studied, when a limb outgrowth of 0.5–2 mm in length is covered by wound epidermis and the underlying connective is turning into a dense scar. In comparison with a regenerating tail of 3–5 mm in length, the number of dividing cells is reduced of 40–70% in different tissues of the scarring limb 1–2 mm in length at 18 days postamputation. Dividing cells are still present at 12–25 days postamputation in the cartilaginous epiphyses of the transected tibia and fibula and of the untransected femur. Also, the injured muscles present at the base of the scarring outgrowth still contain sparse dividing cells after 25 days postamputation of the limb. Together previous studies, the present observations suggest that after the initial proliferation of fibroblasts deriving from the injured tissues, especially from the dermis and intermuscle connectives during the initial 7–15 days postinjury, these cells cover the injured tissues underneath the wound epidermis, but rapidly produce high levels of collagen turning the initial blastema into a scar.  相似文献   

16.
Electric organs in Sternarchidae are of neural origin, in contrast to electric organs in other fish, which are derived from muscle. The electric organ in Sternarchus is composed of modified axons of spinal neurons. Fibers comprising the electric organ were studied by dissection and by light- and electron microscopy of sectioned material. The spinal electrocytes descend to the electric organ where they run anteriorly for several segments, turn sharply, and run posteriorly to end blindly at approximately the level where they enter the organ. At the level of entry into the organ, and where they turn around, the axons are about 20 µ in diameter; the nodes of Ranvier have a typical appearance with a gap of approximately 1 µ in the myelin. Anteriorly and posteriorly running parts of the fibers dilate to a diameter of approximately 100 µ, and then taper again. In proximal and central regions of anteriorly and posteriorly running parts, nodal gaps measure approximately 1 µ along the axon. In distal regions of anteriorly and posteriorly running parts are three to five large nodes with gaps measuring more than 50 µ along the fiber axis. Nodes with narrow and with wide gaps are distinguishable ultrastructurally; the first type has a typical structure, whereas the second type represents a new nodal morphology. At the typical nodes a dense cytoplasmic material is associated with the axon membrane. At large nodes, the unmyelinated axon membrane is elaborated to form a closely packed layer of irregular polypoid processes without a dense cytoplasmic undercoating. Electrophysiological data indicate that typical nodes in proximal regions of anteriorly and posteriorly running segments actively generate spikes, whereas large distal nodes are inactive and act as a series capacity. Increased membrane surface area provides a morphological correlate for this capacity. This electric organ comprises a unique neural system in which axons have evolved so as to generate external signals, an adaptation involving a functionally significant structural differentiation of nodes of Ranvier along single nerve fibers.  相似文献   

17.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes.  相似文献   

19.
《The Journal of cell biology》1988,106(4):1263-1272
The synaptic basal lamina, a component of extracellular matrix (ECM) in the synaptic cleft at the neuromuscular junction, directs the formation of new postsynaptic specializations, including the aggregation of acetylcholine receptors (AChRs), during muscle regeneration in adult animals. Although the molecular basis of this phenomenon is unknown, it is mimicked by AChR-aggregating proteins in ECM-enriched fractions from muscle and the synapse-rich electric organ of the ray Torpedo californica. Molecules immunologically similar to these proteins are concentrated in the synaptic basal lamina at neuromuscular junctions of the ray and frog. Here we demonstrate that immunologically, chemically, and functionally similar AChR-aggregating proteins are also associated with the ECM of several other tissues in Torpedo. Monoclonal antibodies against the AChR-aggregating proteins from electric organ intensely stained neuromuscular junctions and the ventral surfaces of electrocytes, structures with a high density of AChRs. However, they also labeled many other structures which have basal laminae, including the extrajunctional perimeters of skeletal muscle fibers, smooth and cardiac muscle cells, Schwann cell sheaths in peripheral nerves, walls of some blood vessels, and epithelial basement membranes in the gut, skin, and heart. Some structures with basal laminae did not stain with the antibodies; e.g., the dorsal surfaces of electrocytes. Bands of similar molecular weight were detected by the antibodies on Western blots of extracts of ECM-enriched fractions from electric organ and several other tissues. Proteins from all tissues examined, enriched from these extracts by affinity chromatography with the monoclonal antibodies, aggregated AChRs on cultured myotubes. Thus, similar AChR- aggregating proteins are associated with the extracellular matrix of many Torpedo tissues. The broad distribution of these proteins suggests they have functions in addition to AChR aggregation.  相似文献   

20.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号