首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
MEK (MAPK kinase) is an upstream protein kinase of MAPK in the MOS/MEK/MAPK/p90rsk signaling pathway. We previously reported the function and regulation of MAPK during rat oocyte maturation. In this study, we further investigated the localization and possible roles of MEK1/2. First, immunofluorescent staining revealed that p-MEK1/2 was restricted to the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), p-MEK1/2 condensed in the vicinity of chromosomes and then translocated to the spindle poles at metaphase I, while spindle microtubules stained faintly. When the oocyte went through anaphase I and telophase I, p-MEK1/2 disappeared from spindle poles and became associated with the midbody. By metaphase II, p-MEK1/2 was again localized to the spindle poles. Second, p-MEK1/2 was localized to the centers of cytoplasmic microtubule asters induced by taxol. Third, p-MEK1/2 co-localized with gamma-tubulin in microtubule-organizing centers (MTOCs). Forth, treatment with U0126, a non-competitive MEK1/2 inhibitor, did not affect germinal vesicle breakdown, but caused chromosome mis-alignment in all MI oocytes examined and abnormal spindle organization as well as small cytoplasmic spindle-like structure formation in MII oocytes. Finally, U0126 reduced the number of cytoplasmic asters induced by taxol. Our data suggest that MEK1/2 has regulatory functions in microtubule assembly and spindle organization during rat oocyte meiotic maturation.  相似文献   

2.
Our recent studies have shown that MEK1/2 is a critical regulator of microtubule organization and spindle formation during oocyte meiosis. In the present study, we found that Plk1 colocalized with p-MEK1/2 at various meoiotic stages after GVBD when microtubule began to organize. Also, Plk1 was able to coimmunoprecipitate with p-MEK1/2 in metaphase I stage mouse oocyte extracts, further confirming their physical interaction. Taxol-treated oocytes exhibited a number of cytoplasmic asters, in which both Plk1 and p-MEK1/2 were present, indicating that they might be complexed to participate in the acentrosomal spindle formation at the MTOCs during oocyte meiosis. Depolymerization of microtubules by nocodazole resulted in the complete disassembly of spindles, but Plk1 remained associated with p-MEK1/2, accumulating in the vicinity of chromosomes. More importantly, when p-MEK1/2 activity was blocked by U0126, Plk1 lost its normal localization at the spindle poles, which might be one of the most vital factors causing the abnormal spindles in MEK1/2-inhibited oocytes. Taken together, these data indicate that Plk1 and MEK1/2 regulate the spindle formation in the same pathway and that Plk1 is involved in MEK1/2-regulated spindle assembly during mouse oocyte meiotic maturation.  相似文献   

3.
The present study was designed to investigate subcellular localization of MAD2 in rat oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at germinal vesicle (GV), prometaphase I (ProM-I), metaphase I (M-I), anaphase I (A-I), telophase I (T-I), and metaphase II (M-II) were fixed and immunostained for MAD2, kinetochores, microtubules and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes from GV to M-II stages were treated by a microtubule disassembly drug, nocodazole, or treated by a microtubule stabilizer, Taxol, before examination. Anti-MAD2 antibody was also injected into the oocytes at GV stage and the injected oocytes were cultured for 6 h for examination of chromosome alignment and spindle formation. It was found that MAD2 was at the kinetochores in the oocytes at GV and ProM-I stages. Once the oocytes reached M-I stage in which an intact spindle was formed and all chromosomes were aligned at the equator of the spindle, MAD2 disappeared. However, when oocytes from GV to M-II stages were treated by nocodazole, spindles were destroyed and MAD2 was observed in all treated oocytes. When nocodazole-treated oocytes at M-I and M-II stages were washed and cultured for spindle recovery, it was found that, once the relationship between microtubules and chromosomes was established, MAD2 disappeared in the oocytes even though some chromosomes were not aligned at the equator of the spindle. On the other hand, when oocytes were treated with Taxol, MAD2 localization was not changed and was the same as that in the control. However, immunoblotting of MAD2 indicated that MAD2 was present in the oocytes at all stages; nocodazole and Taxol treatment did not influence the quantity of MAD2 in the cytoplasm. Significantly higher proportions of anti-MAD2 antibody-injected oocytes proceeded to premature A-I stage and more oocytes had misaligned chromosomes in the spindles. The present study indicates that MAD2 is a spindle checkpoint protein in rat oocytes during meiosis. When the spindle was destroyed by nocodazole, MAD2 was reactivated in the oocytes to overlook the attachment between chromosomes and microtubules. However, in this case, MAD2 could not check unaligned chromosomes in the recovered spindles, suggesting that a normal chromosome alignment is maintained only in the oocytes without any microtubule damages during maturation.  相似文献   

4.
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.  相似文献   

5.
The unfertilized mouse oocyte is arrested at second metaphase of meiosis with microtubules existing exclusively in the meiotic spindle. Multiple inactive cytoplasmic microtubule organizing centers (MTOCs) are also present. These MTOCs can be identified immunocytochemically with an autoimmune serum (No. 5051) directed against pericentriolar material (PCM) and also by their nucleating capacity in the presence of taxol which effectively lowers the critical concentration for tubulin polymerization. Taxol induces the formation of cytoplasmic microtubule asters around the PCM foci, a process which also occurs in untreated eggs after fertilization. The molecular characterization of these structures has not been undertaken previously, probably due to the very small amount of material available. We have developed a single-step purification procedure by which very clean preparations of meiotic spindles and cytoplasmic asters can be obtained, as judged by phase-contrast microscopy and transmission electron microscopy. The purified structures were shown to correspond to those observed in vivo: positive staining of the spindles was observed with anti-tubulin and anti-phosphoprotein (MPM2) antibodies, and positive staining of the MTOCs was observed with MPM2, No. 5051, and anti-calmodulin antibodies. As expected, tubulin was the major protein present in the preparations. Silver staining of SDS-PAGE also revealed the presence of a small number of other polypeptides (Mr of around 47, 35, and 25K). Amongst newly synthesized polypeptides associated with the preparation, two prominent high molecular weight proteins (greater than 200K) were enriched in addition to tubulin and polypeptides with Mr of around 52, 41, and 35K.  相似文献   

6.
《The Journal of cell biology》1985,101(5):1665-1672
A human autoantiserum (5051) directed against pericentriolar material (PCM) was used to study the distribution of microtubule-organizing centers (MTOCs) in the oocyte and during the first cell cycle of mouse development. In oocytes, the PCM was found not only at the poles of the barrel-shaped metaphase II spindle but also at many discrete loci around the cytoplasm near the cell cortex. The spindle poles were also composed of several PCM foci. In metaphase-arrested eggs only the PCM foci located near the chromosomes acted as MTOCs. However, after reduction of the critical concentration for tubulin polymerization by taxol, the cytoplasmic PCM foci were also found to be associated with nucleation of microtubules. After fertilization the cortical PCM foci remained in a peripheral position until the end of the S phase, when they appeared to migrate centrally towards the pronuclei. At prometaphase of the first mitotic division, numerous MTOCs were found around the two sets of chromosomes; these MTOCs then aligned to form two bands on either side of the metaphase plate of the first mitosis.  相似文献   

7.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   

8.
The present study was designed to investigate the localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at various stages during the first meiosis were fixed and immunostained for MAD1, kinetochores, microtubules, and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes were treated with nocodazole or Taxol before examination. The anti-MAD1 antibody was injected into the oocytes at the germinal vesicle (GV) stage for examination of chromosome alignment and spindle formation. It was found that MAD1 was present in the oocytes from the GV to prometaphase I stages around the nuclei. When the oocytes reached the metaphase I (M-I) to metaphase II (M-II) stages, MAD1 was mainly localized at the spindle poles. However, MAD1 relocated to the vicinity of the chromosomes when spindles were disassembled by nocodazole or cooling, and the relocated MAD1 moved back to the spindle poles during spindle recovery. Taxol treatment did not affect the MAD1 localization. Although anti-MAD1 antibody injection did not affect nuclear maturation, significantly higher proportions of injected oocytes had misaligned chromosomes when the oocytes reached the M-I to M-II stages. The results of the present study indicate that MAD1 is present in mouse oocytes at all stages during the first meiosis and that it participates in spindle checkpoint during meiosis. However, MAD1 could not check misaligned chromosomes during spindle recovery after the spindles were destroyed by drug or cooling, which caused some chromosomes to scatter in the oocytes.  相似文献   

9.
Schuh M  Ellenberg J 《Cell》2007,130(3):484-498
Chromosome segregation in mammalian oocytes is driven by a microtubule spindle lacking centrosomes. Here, we analyze centrosome-independent spindle assembly by quantitative high-resolution confocal imaging in live maturing mouse oocytes. We show that spindle assembly proceeds by the self-organization of over 80 microtubule organizing centers (MTOCs) that form de novo from a cytoplasmic microtubule network in prophase and that functionally replace centrosomes. Initially distributed throughout the ooplasm, MTOCs congress at the center of the oocyte, where they contribute to a massive, Ran-dependent increase of the number of microtubules after nuclear envelope breakdown and to the individualization of clustered chromosomes. Through progressive MTOC clustering and activation of kinesin-5, the multipolar MTOC aggregate self-organizes into a bipolar intermediate, which then elongates and thereby establishes chromosome biorientation. Finally, a stable barrel-shaped acentrosomal metaphase spindle with oscillating chromosomes and astral-like microtubules forms that surprisingly exhibits key properties of a centrosomal spindle.  相似文献   

10.
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.  相似文献   

11.
Changes in organelle topography and microtubule configuration have been studied during the resumption and progression of meiosis in cultured preovulatory rat oocytes. Germinal vesicle breakdown (GVBD) was reversibly inhibited by dibutyryl cAMP (DcAMP) or nocodazole, a microtubule-disrupting agent. The microtubule stabilizing agent taxol did not inhibit GVBD, but did impair further maturation. The migration of acidic organelles and chromatin in living oocytes was analyzed using the vital stains acridine orange and Hoechst 33258, respectively. Germinal vesicle stage oocytes undergo perinuclear aggregation of acidic organelles during GVBD and these organelles subsequently disperse into the cell cortex as the first meiotic spindle migrates to the oocyte periphery. DcAMP and nocodazole block the perinuclear aggregation of acidic organelles, whereas, in taxol-treated oocytes, organelle aggregation and GVBD occur but the dispersion of acidic organelles was arrested. Dose-response studies on the effects of nocodazole showed that GVBD was generally retarded and that a 50% inhibition of GVBD was achieved at concentrations in excess of 1.0 microM. Concentrations of taxol at 10 microM or above effectively inhibited both chromatin condensation and meiotic spindle formation. Indirect immunofluorescence microscopy with anti-tubulin antibodies revealed dissolution of microtubules with 1.0 microM nocodazole. Taxol had little effect on microtubule organization in germinal vesicle or chromatin condensation stage oocytes; however, when oocytes that had formed first meiotic spindles were treated with taxol, numerous microtubule asters appeared which were preferentially associated with the oocyte cortex. The changes in organelle topography, microtubule configuration, and drug sensitivity are discussed with respect to the regulation of cytoplasmic reorganization during the meiotic maturation of rat preovulatory oocytes.  相似文献   

12.
In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball‐like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore–microtubule attachments in fine‐tuning acentrosomal spindle bipolarity.  相似文献   

13.
Alterations in the organization of the microtubular cytoskeleton and chromosome alignment were examined by tubulin immunofluorescence and DAPI staining during in vivo ageing of naturally ovulated, metaphase-arrested oocytes of CBA/Ca mice in the fallopian tubes. In oocytes isolated from young mice on the day of oestrus, a few hours after ovulation, when they are still tightly surrounded by cumulus, the anti-tubulin fluorescence is almost exclusively restricted to the metaphase spindle. Only some faintly staining foci are observed in the cytoplasm, which presumably represent cytoplasmic MTOC not involved in spindle formation. The spindle is usually barrel-shaped or slightly pointed at its poles and does not possess astral fibres. In oocytes aged for more than 12 h in the fallopian tubes cytoplasmic asters develop, while microtubules seem to become gradually lost from the spindle, preferentially in its central area near the chromosomes. Astral fibres are observed radiating out from the polar centrosomes into the cytoplasm. In oocytes free of cumulus, and consequently more than 24 h post-ovulation, a pronounced shrinking of the spindle is observed. The mean pole-to-pole distance becomes significantly reduced in postovulatory aged cells. At the same time astral microtubules in the cytoplasm appear to become gradually depolymerized. Age-dependent alterations in the microtubular cytoskeleton do not seem to result from a changed pattern of the post-translational detyrosylation of -tubulin in certain sets of microtubules. In freshly ovulated oocytes chromosomes in most spindles are well ordered and precisely arranged at the equatorial plane. In 11% of the cells only, there was dislocation of one or several of the chromosomes from the spindle equator. By contrast, 61.4% of bipolar spindles of postovulatory aged oocytes have chromosomes displaced from the centre of the spindle towards one of the spindle poles. The implications of the observed alterations in the microtubular cytoskeleton, shrinking of the spindle and increased disorder of chromosome alignment are discussed with regard to predisposition to aneuploidy and reduction of developmental potential of postovulatory aged oocytes.  相似文献   

14.
Our objective was to document potential subcellular consequences of treatment with the microtubule stabilizer Taxol with or without subsequent vitrification of cow and calf oocytes by the open pulled straw (OPS) method. Oocytes were divided into four experimental groups for cows and four groups for calves: (1) a control group fixed immediately after maturation; (2) an OPS group cryopreserved by conventional OPS; (3) a Taxol/CPA group exposed to 1 microM Taxol and cryoprotective agents (CPAs); and (4) a Taxol/OPS group vitrified by OPS including 1 microM Taxol to the vitrification solution. All oocytes were processed for light and transmission electron microscopy. The main injuries were observed on the metaphase plate and the spindle. In control oocytes, the metaphase appeared as condensed chromosomes arranged in a well-organized metaphase plate and the spindle showed well organized microtubules in both cow and calf oocytes. However, in cow OPS oocytes, the metaphase plate was disorganized into scattered chromosomes or the chromosomes were condensed into a single block of chromatin. In addition, microtubules were not organized as typical spindles. In contrast, cow Taxol/OPS oocytes as well as both cow and calf Taxol/CPAs oocytes showed well-organized metaphase plates and normal spindle morphology. All calf OPS and calf Taxol/OPS oocytes displayed a single block of chromatin and no microtubules could be observed around the chromosomes. In conclusion, treatment with 1 microM Taxol before and during vitrification did not induce adverse changes in the oocyte cytoplasm or metaphase spindles in adult bovine oocytes, but stabilized the metaphase and spindle morphology.  相似文献   

15.
We have used time-lapse laser scanning confocal microscopy to directly examine microtubule reorganization during meiotic spindle assembly in living Drosophila oocytes. These studies indicate that the bipolarity of the meiosis I spindle is not the result of a duplication and separation of centrosomal microtubule organizing centers (MTOCs). Instead, microtubules first associate with a tight chromatin mass, and then bundle to form a bipolar spindle that lacks asters. Analysis of mutant oocytes indicates that the Non-Claret Disjunctional (NCD) kinesin-like protein is required for normal spindle assembly kinetics and stabilization of the spindle during metaphase arrest. Immunolocalization analyses demonstrate that NCD is associated with spindle microtubules, and that the centrosomal components gamma- tubulin, CP-190, and CP-60 are not concentrated at the meiotic spindle poles. Based on these observations, we propose that microtubule bundling by the NCD kinesin-like protein promotes assembly of a stable bipolar spindle in the absence of typical MTOCs.  相似文献   

16.
Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.  相似文献   

17.
To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct gamma-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and gamma-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (gamma-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes  相似文献   

18.
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes.  相似文献   

19.
A selective disruption of the mouse CENP-E gene was generated to test how this kinetochore-associated, kinesin-like protein contributes to chromosome segregation. The removal of CENP-E in primary cells produced spindles in which some metaphase chromosomes lay juxtaposed to a spindle pole, despite the absence of microtubules stably bound to their kinetochores. Most CENP-E-free chromosomes moved to the spindle equator, but their kinetochores bound only half the normal number of microtubules. Deletion of CENP-E in embryos led to early developmental arrest. Selective deletion of CENP-E in liver revealed that tissue regeneration after chemical damage was accompanied by aberrant mitoses marked by chromosome missegregation. CENP-E is thus essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores.  相似文献   

20.
Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号