首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
In the atmosphere, ammonia (NH3) is the third most abundant N species which, due to various natural and anthropogenic sources, can locally reach high concentrations. The acquisition of atmospheric NH3 by plant shoots will lead to two opposing effects on acid-base balance. Absorption and dissolution of NH3 will cause an alkalinisation, while the assimilation of NH3 results in an acidification. Different rates of these processes would lead to an acid-base imbalance with consequences for the ionic balance of the plant. As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve a pattern of (in)organic ion flow between shoots and roots followed by H+/OH? extrusion into the media via roots. The acquisition of NH3 as additional N source should lead to a reduction in the ratio of mol H+/OH? gained per mol N assimilated. We have recently investigated the NH3 acquisition by Lolium perenne L. cv. Centurion and studied the effects of gas phase NH3 on growth, acid-base balance and water-use efficiency. The experiments, therefore, included the application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots. After a summary of the main conclusions from those experiments, we discuss the implications of the use of atmospheric NH3 for the mineral composition of the plants. Over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The most significant effect of fumigation on the ion balance was an increase in K+ within all treatments, and this effect was highest in the NH4+-fed plants. The results of the experiments support predictions of a combination of neutralizing biochemical reactions as well as transport of organic anion salts between shoots and roots as possible acid-base regulation mechanisms of the whole plant.  相似文献   

2.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

3.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

4.
Studies that quantify plant δ15N often assume that fractionation during nitrogen uptake and intra-plant variation in δ15N are minimal. We tested both assumptions by growing tomato (Lycopersicon esculetum Mill. cv. T-5) at NH4+ or NO?3 concentrations typical of those found in the soil. Fractionation did not occur with uptake; whole-plant δ15N was not significantly different from source δ15 N for plants grown on either nitrogen form. No intra-plant variation in δ15N was observed for plants grown with NH+4. In contrast. δ15N of leaves was as much as 5.8% greater than that of roots for plants grown with NO?3. The contrasting patterns of intra-plant variation are probably caused by different assimilation patterns. NH+4 is assimilated immediately in the root, so organic nitrogen in the shoot and root is the product of a single assimilation event. NO?3 assimilation can occur in shoots and roots. Fractionation during assimilation caused the δ15N of NO?3 to become enriched relative to organic nitrogen; the δ15N of NO?3 was 11.1 and 12.9% greater than the δ15N of organic nitrogen in leaves and roots, respectively. Leaf δ15N may therefore be greater than that of roots because the NO?3 available for assimilation in leaves originates from a NO?3 pool that was previously exposed to nitrate assimilation in the root.  相似文献   

5.
Acid-base regulation during nitrate assimilation in Hydrodictyon africanum   总被引:8,自引:5,他引:3  
Abstract The acid-base balance during NO3? assimilation in Hydrodictyon africanum has been investigated during growth from (1) an analysis of the elemental composition of the cells, (2) the alkalinity of the ash and (3) the net H+ changes in the medium during growth. These investigations agree in showing that some 0.25 excess organic negative charges are generated per N assimilation from No3? as N-source and C02 as C-source; the excess OH? (0.75 OH? per NO3? assimilated) appears in the medium. Approximately half of the excess organic negative charge is attributable to cell wall uronates; the remainder is intracellular. All of the excess OH? appearing in the medium must have crossed the plasmalemma (as net downhill H+ influx or OH? efflux). Previous work has shown that the value of ψco is more negative than ψK+ during NO3? assimilation, suggesting that the active electrogenic H+ extrusion pump is still operative despite the net downhill H+ influx. The interpretation of this in terms of H+?NO3? symport which causes the entry of more H+ than is consumed in NO3? metabolism, with extrusion of the excess H+via the active, electrogenic H+ pump, was tested by measuring short-term H+ influx upon addition of NO?3. A net H+ influx occurs before NOa assimilation (as indicated by additional O2 evolution in the light) has commenced, suggesting a mechanistic relation of H+ and NO3? influxes. This is consistent with the interpretation suggested above. Determinations of cytoplasmic pH showed no significant effect of NO3? assimilation, suggesting that cytoplasmic pH changes sufficient to change the ‘pH-regulating’ H+ fluxes are smaller than the errors in the determination of cytoplasmic pH.  相似文献   

6.
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3?) or ammonium (NH4+), using membrane‐localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2, chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3? or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N‐uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3?‐uptake rate per g root was correlated with a decrease in the concentration of NO3?‐uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+‐uptake proteins and reduced N assimilation was correlated with decreased concentration of N‐assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).  相似文献   

7.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   

8.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   

9.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

10.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

11.
Nitrate fertilization has been shown to increase Zn hyperaccumulation by Noccaea caerulescens (Prayon) (formerly Thlaspi caerulescens). However, it is unknown whether this increased hyperaccumulation is a direct result of NO3 ? nutrition or due to changes in rhizosphere pH as a result of NO3 ? uptake. This paper investigated the mechanism of NO3 ?-enhanced Zn hyperaccumulation in N. caerulescens by assessing the response of Zn uptake to N form and solution pH. Plants were grown in nutrient solution with 300 μM Zn and supplied with either (NH4)2SO4, NH4NO3 or Ca(NO3)2. The solutions were buffered at either pH 4.5 or 6.5. The Zn concentration and content were much higher in shoots of NO3 ?-fed plants than in NH4 +-fed plants at pH 4.5 and 6.5. The Zn concentration in the shoots was mainly enhanced by NO3 ?, whereas the Zn concentration in the roots was mainly enhanced by pH 6.5. Nitrate increased Zn uptake in the roots at pH 6.5 and increased apoplastic Zn at pH 4.5. Zinc and Ca co-increased and was found co-localized in leaf cells of NO3 ?-fed plants. We conclude that NO3 ? directly enhanced Zn uptake and translocation from roots to shoots in N. caerulescens.  相似文献   

12.
Abstract Lolium perenne L. cv. S23 was grown in flowing culture solution, pH 5, in which the concentrations of NH4+, NO3? and K+ were frequently monitored and adjusted to set values. In a pre-experimental period, plants were acclimatized to a regime in which roots were treated at 5°C with shoots at 25°C. The root temperature was then changed to one of the following, 3, 7, 9, 11, 13, 17 or 25°C, while air temperature remained at 25°C. When root temperature was increased from 5X, the relative growth rate of roots increased immediately while that of shoots changed much less for a period of approximately 9 d (phase 1). Thus, the root: shoot ratio increased, but eventually approached a new, temperature-dependent, steady value (phase 2). The fresh: freeze-dried weight ratio (i.e. water content) in shoots (and roots) increased during the first phase of morphological adjustment (phase 1). In both growth phases and at all temperatures, plants absorbed more NH4+ than NO4+, the tendency being extreme at temperatures below 9° where more than 85% of the N absorbed was NH4+. Plants at different root temperatures, growing at markedly different rates, had very similar concentrations of total N in their tissues (cells) on a fresh weight basis, despite the fact that they derived their N with differing preference for NH4+. Specific absorption rates for NH4+, NOx?, K+ and H2PO4? showed very marked dependence on root temperature in phase 1, but ceased to show this dependence once a steady state root: shoot ratio had been established in phase 2. The results indicate the importance of relative root size in determining ion fluxes at the root surface. At higher temperatures where the root system was relatively large, ‘demand’ per unit root was low, whereas at low temperatures roots were small relative to shoots and ‘demand’ was high enough to offset the inhibitory effects of low temperature on transport processes.  相似文献   

13.
Poplar plants are cultivated as woody crops, which are often fertilized by addition of ammonium (NH4 +) and/or nitrate (NO3 ?) to improve yields. However, little is known about net NH4 +/NO3 ? fluxes and their relation with H+ fluxes in poplar roots. In this study, net NH4 +/NO3 ? fluxes in association with H+ fluxes were measured non-invasively using scanning ion-selective electrode technique in fine roots of Populus popularis. Spatial variability of NH4 + and NO3 ? fluxes was found along root tips of P. popularis. The maximal net uptake of NH4 + and NO3 ? occurred, respectively, at 10 and 15 mm from poplar root tips. Net NH4 + uptake was induced by ca. 48 % with provision of NO3 ? together, but net NO3 ? uptake was inhibited by ca. 39 % with the presence of NH4 + in poplar roots. Furthermore, inactivation of plasma membrane (PM) H+-ATPases by orthovanadate markedly inhibited net NH4 +/NO3 ? uptake and even led to net NH4 + release with NO3 ? co-provision. Linear correlations were observed between net NH4 +/NO3 ? and H+ fluxes in poplar roots except that no correlation was found between net NH4 + and H+ fluxes in roots exposed to NH4Cl and 0 mM vanadate. These results indicate that root tips play a key role in NH4 +/NO3 ? uptake and that net NH4 +/NO3 ? fluxes and the interaction of net fluxes of both ions are tightly associated with H+ fluxes in poplar roots.  相似文献   

14.
Acid-base regulation during ammonium assimilation in Hydrodictyon africanum   总被引:1,自引:1,他引:0  
Abstract The acid-base balance during ammonium (used to mean NH 4+ and/or NH3) assimilation in Hydrodictyon africanum has been measured on cells growing with about 1 mol m?3 ammonium at an external pH of about 6.5. Measurements made included (1) ash alkalinity (corrected for intracellular ammonium) which yields net organic negative charge, (2) the accumulation of organic N in the cells and (3) the change in extracellular H+ (from the pH change and the buffer capacity). These measurements showed that some 0.25 excess organic negative charge (half in the cell wall, half inside the plasmalemma) accumulates per organic N synthesized, while some 1.25H+ accumulate in the medium per organic N synthesized. Granted a permeability (PNH3) of some 10?3 cm s?1, and a finite [NH3] in the cytoplasm of these N-assimilating cells it is likely that most of the ammonium entering these growing cells is as NH 4+. This means that most of the H + appearing in the medium must have originated from inside the cell and have been subjected to active efflux at the plasmalemma: H+ accumulates in the medium equivalent to any NH3 entry by requilibration from exogenous NH 4+. The cell composition (net organic negative charge, organic N content) is very similar in these ammonium-grown cells to that of NO3+grown cells, suggesting that there is no action of a ‘biochemical pH stat’ during longterm assimilation of NO3+in H. africanum. Short-term experiments were carried out at an external pH of 7.2 in which ammonium at various concentrations were supplied to NO3+-grown cells. There was in all cases a rapid influx followed by a slower uptake; at least at the lower concentrations (less than 100 μmol dm?3) the net influx was all attributable to NH4+influx via a uniporter, probably partly short-circuited by a passive NH3 efflux due to intrinsic membrane permeability to NH3. The net ammonium influx was in all cases associated with H+ accumulation in the medium. (1.3-1.7 H + per ammonium taken up); as in the growth experiments, most of the ammonium taken up was assimilated. Determinations of cytoplasmic pH showed either no effect on, or a slight decrease in, pH during ammonium assimilation; the changes that occurred were in the direction expected for actuating a ‘pH-regulating’ change in H+ fluxes.  相似文献   

15.
Bowman DC  Paul JL 《Plant physiology》1988,88(4):1303-1309
Assimilation of NO3 and NH4+ by perennial ryegrass (Lolium perenne L.) turf, previously deprived of N for 7 days, was examined. Nitrogen uptake rate was increased up to four- to five-fold for both forms of N by N-deprivation as compared to N-sufficient controls, with the deficiency-enhanced N absorption persisting through a 48 hour uptake period. Nitrate, but not NH4+, accumulated in the roots and to a lesser degree in shoots. By 48 hours, 53% of the absorbed NO3 had been reduced, whereas 97% of the NH4+ had been assimilated. During the early stages (0 to 8 hours) of NO3 uptake by N-deficient turf, reduction occurred primarily in the roots. Between 8 and 16 hours, however, the site of reduction shifted to the shoots. Nitrogen form did not affect partitioning of the absorbed N between roots (40%) and shoots (60%) but did affect growth. Compared to NO3, NH4+ uptake inhibited root, but not shoot, growth. Total soluble carbohydrates decreased in both roots and shoots during the uptake period, principally the result of fructan metabolism. Ammonium uptake resulted in greater total depletion of soluble carbohydrates in the root compared to NO3 uptake. The data indicate that N assimilation by ryegrass turf utilizes stored sugars but is also dependent on current photosynthate.  相似文献   

16.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4^+/NO3- ratios. Cabbage seedlings were grown in a greenhouse in nutrient solutions with five NH4^+/NO3- ratios (1:0; 0.75:0.25; 0.5:0.5; 0.25:0.75; and 0:1). The results showed that cabbage growth was reduced by 87% when the proportion of NH4^+-N in the nutrient solution was more than 75% compared with a ratio NH4^+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity due to the accumulation of a large amount of free ammonia in the leaves. When the NH4+/NO3- ratio was 0.5:0.5, fresh seedling weight, root length, and H2PO4- (P), K^+, Ca^2+, and Mg^2+ concentrations were all higher than those in plants grown under other NH4^+/NO3- ratios. The nitrate concentration in the leaves was the lowest in plants grown at 0.5: 0.5 NH4^+/NO3-. The present results indicate that an appropriate NH4^+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

17.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

18.
Soybeans (Glycine max L. Merr., cv Kingsoy) were grown on media containing NO3 or urea. The enrichments of shoots in K+, NO3, and total reduced N (Nr), relative to that in Ca2+, were compared to the ratios K+/Ca2+,NO3/Ca2+, and Nr/Ca2+ in the xylem saps, to estimate the cycling of K+, and Nr. The net production of carboxylates (R) was estimated from the difference between the sums of the main cations and inorganic anions. The estimate for shoots was compared to the theoretical production of R associated with NO3 assimilation in these organs, and the difference was attributed to export of R to roots. The net exchange rates of H+ and OH between the medium and roots were monitored. The shoots were the site of more than 90% of total NO3 reduction, and Nr was cycling through the plants at a high rate. Alkalinization of the medium by NO3-fed plants was interrupted by stem girdling, and not restored by glucose addition to the medium. It was concluded that the majority of the base excreted in NO3 medium originated from R produced in the shoots, and transported to the roots together with K+. As expected, cycling of K+ and reduced N was favoured by NO3 nutrition as compared to urea nutrition.  相似文献   

19.
Root growth as a function of ammonium and nitrate in the root zone   总被引:6,自引:1,他引:6  
We examined the effect of soil NH4+ and NO3? content upon the root systems of field-grown tomatoes, and the influence of constant, low concentrations of NH4+ or NO3? upon root growth in solution culture. In two field experiments, few roots were present in soil zones with low extractable NH4+ or NO3?; they increased to a maximum in zones having 2μg-N NO3? g?1 soil and 6 μg-N NO3= g?1 soil, but decreased in zones having higher NH4+ or NO3? levels. Root branching was relatively insensitive to available mineral nitrogen. Plants maintained in solution culture at constant levels of NH4+ or NO3?, had similar shoot biomass, but all root parameters – biomass, length, branching and area – were greater under NH4 nutrition than under NO3?. These results suggest that the size of root system depends on a functional equilibrium between roots and shoots (Brouwer 1967) and on the balance between soil NH4+ and NO3?.  相似文献   

20.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号