首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Electrophysiological properties of mouse bone marrow-derived mast cells (BMMC) were studied under the whole-cell clamp configuration. About one third of the cells were quiescent, but others expressed either inward or outward currents. Inwardly rectifying (IR) currents were predominant in 14% of the cells, and outwardly rectifying (OR) currents in 24%. The rest (22%) of the cells exhibited both inward and outward currents. The IR currents were eliminated by 1 mm Ba2+, and were partially inhibited by 100 μm quinidine. The reversal potential was dependent on extracellular K+, thereby indicating that K+ mediated the IR currents. The negative conductance region was seen at potentials positive to E K. The OR currents did not apparently depend on the extracellular K+ concentration, but were reduced by lowering the extracellular Cl? concentration. The OR currents were partially blocked by 1 mm Ba2+, and were further blocked by a Cl? channel blocker, 4,4′-diisothiocyano-2, 2′-stilbenedisulfonate (DIDS). In addition, the reversal potential of the OR currents was positively shifted by decreasing the ratio of external and internal Cl? concentrations, suggesting that Cl? was a major ion carrier. In cells exhibiting IR currents, the membrane potential varied among cells and tended to depolarize by elevating the external K+ concentration. In cells with OR currents, the resting potential was hyperpolarized in association with an increase in conductance. These results suggest that BMMC have a heterogeneous electrophysiological profile that may underlie a variety of ion channels expressed in different phenotypes of mast cells. Activities of both the inwardly rectifying K+ channel and the outwardly rectifying Cl? channel seem to contribute to the regulation of the membrane potential.  相似文献   

2.
We have previously demonstrated the expression of BK channels in human glioma cells. There was a curious feature to the whole-cell currents of glioma cells seen during whole-cell patch-clamp: large, outward current transients accompanied repolarization of the cell membrane following an activating voltage step. This transient current, I transient, activated and inactivated rapidly (1 ms). The I-V relationship of I transient had features that were inconsistent with simple ionic current through open ion channels: (i) I transient amplitude peaked with a –80 mV voltage change and was invariant over a 200 mV range, and (ii) I transient remained large and outward at –140 mV. We provide evidence for a direct relationship of I transient to glioma BK currents. They had an identical time course of activation, identical pharmacology, identical voltage-dependence, and small, random variations in the amplitude of the steady-state BK current and I transient seen over time were often perfectly in phase. Substituting intracellular K+ with Cs+, Li+, or Na + ions reversibly reduced I transient and BK currents. I transient was not observed in recordings of other BK currents (hbr5 expressed in HEK cells and BK currents in rat neurons), suggesting I transient is unique to BK currents in human glioma cells. We conclude that I transient is generated by a mechanism related to the deactivation, and level of prior activation, of glioma BK channels. To account for these findings we propose that K+ ions are trapped within glioma BK channels during deactivation and are forced to exit to the extracellular side in a manner independent of membrane potential.  相似文献   

3.
IKs channels are voltage dependent and K+ selective. They influence cardiac action potential duration through their contribution to myocyte repolarization. Assembled from minK and KvLQT1 subunits, IKs channels are notable for a heteromeric ion conduction pathway in which both subunit types contribute to pore formation. This study was undertaken to assess the effects of minK on pore function. We first characterized the properties of wild-type human IKs channels and channels formed only of KvLQT1 subunits. Channels were expressed in Xenopus laevis oocytes or Chinese hamster ovary cells and currents recorded in excised membrane patches or whole-cell mode. Unitary conductance estimates were dependent on bandwidth due to rapid channel “flicker.” At 25 kHz in symmetrical 100-mM KCl, the single-channel conductance of IKs channels was ∼16 pS (corresponding to ∼0.8 pA at 50 mV) as judged by noise-variance analysis; this was fourfold greater than the estimated conductance of homomeric KvLQT1 channels. Mutant IKs channels formed with D76N and S74L minK subunits are associated with long QT syndrome. When compared with wild type, mutant channels showed lower unitary currents and diminished open probabilities with only minor changes in ion permeabilities. Apparently, the mutations altered single-channel currents at a site in the pore distinct from the ion selectivity apparatus. Patients carrying these mutant minK genes are expected to manifest decreased K+ flux through IKs channels due to lowered single-channel conductance and altered gating.  相似文献   

4.
The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or I A) current and a slow inactivating (D-current or I D) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (I K), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and I K, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and I K when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.  相似文献   

5.
Single inward rectifier K+ channels were studied in Xenopus laevis embryonic myocytes. We have characterized in detail the channel which is most frequently observed (Kir) although we routinely observe three other smaller current levels with the properties of inward rectifier K+ channels (Kir(0.3), Kir(0.5) and Kir(0.7)). For Kir, slope conductances of inward currents were 10.3, 20.3, and 27.9 pS, in 60, 120 and 200 mM [K+] o respectively. Extracellular Ba2+ blocked the normally high channel activity in a concentration-dependent manner (K A = 7.8 μm, −90 mV). In whole-cell recordings of inward rectifier K+ current, marked voltage dependence of Ba2+ block over the physiological range of potentials was observed. We also examined current rectification. Following step depolarizations to voltages positive to E K , outward currents through Kir channels were not observed even when the cytoplasmic face of excised patches were exposed to Mg2+-free solution at pH 9.1. This was probably also true for Kir(0.3), Kir(0.5) and Kir(0.7) channels. We then examined the possibility of modulation of Kir channel activity and found neither ATP nor GTP-γS had any effect on Kir channel activity when added to the solution perfusing the cytoplasmic face of a patch. Kinetic analysis revealed Kir channels with a single open state (mean dwell time 72 msec) and two closed states (time constants 1.4, 79 msec). These results suggest that the native Kir channels of Xenopus myocytes have similar properties to the cloned strong inward rectifier K+ channels, in terms of conductance, kinetics and barium block but does show some differences in the effects of modulators of channel activity. Furthermore, skeletal muscle may contain either different inward rectifier channels or a single-channel type which can exist in stable subconductance states. Received: 16 September 1996/Revised: 14 March 1997  相似文献   

6.
The efficacy and mechanism of -dendrotoxin (DTX) block of K+ channel currents in Vicia stomatal guard cells was examined. Currents carried by inward- and outward-rectifying K+ channels were determined under voltage clamp in intact guard cells, and block was characterized as a function of DTX and external K+ (K+) concentrations. Added to the bath, 0.1-30 nM DTX blocked the inward-rectifying K+ current (IK,in), but was ineffective in blocking current through the outward-rectifying K+ channels (IK,out) even at concentrations of 30 nM. DTX block was independent of clamp voltage and had no significant effect on the voltage-dependent kinetics for IK,in, neither altering its activation at voltages negative of –120 mV nor its deactivation at more positive voltages. No evidence was found for a use dependence to DTX action. Block of IK,in followed a simple titration function with an apparent K1/2 for block of 2.2 nM in 3 mm K o + . However, DTX block was dependent on the external K+ concentration. Raising K+ from 3 to 30 mm slowed block and resulted in a 60–70% reduction in its efficacy (apparent K i = 10 mm in 10 nm DTX). The effect of K+ in protecting I K,in was competitive with DTX and specific for permeant cations. A joint analysis of IK,in block with DTX and K+ concentration was consistent with a single class of binding sites with a K d for DTX of 240 pm. A K d of 410 m for extracellular K+ was also indicated. These results complement previous studies implicating a binding site requiring extracellular K+ (K1/2 1 mm) for IK,in activation; they parallel features of K+ channel block by DTX and related peptide toxins in many animal cells, demonstrating the sensitivity of plant plasma membrane K+ channels to nanomolar toxin concentrations under physiological conditions; the data also highlight one main difference: in the guard cells, DTX action appears specific to the K+ inward rectifier.We thank J.O. Dolly (Imperial, London) and S.M. Jarvis (University of Kent, Canterbury) for several helpful discussions. This work was supported by SERC grant GR/H07696 and was aided by equipment grants from the Gatsby Foundation, the Royal Society and the University of London Central Research Fund. G.O. was supported by an Ausbildungsstipendium (OB 85/1-1) from the Deutsche Forschungsgemeinschaft. F.A. holds a Sainsbury Studentship.  相似文献   

7.
We report on the role of K+ currents in the mechanisms regulating the proliferation of UMR 106-01 osteoblastic osteosarcoma cells. Electrophysiological analysis showed that UMR 106-01 cells produce robust K+ currents that can be pharmacologically separated into two major components: a E-4031-susceptible current, I E-4031, and a tetraethylammonium (TEA)-susceptible component, I TEA. Western blot and RT-PCR analysis showed that I E-4031 is produced by ether a go-go (eag)-related channels (ERG). Incubation of the cells with E-4031 enhanced their proliferation by 80%. Application of E-4031 in the bath solution did not induce instantaneous changes in the membrane resting potential or in the level of cytosolic calcium; however, the cells were slightly depolarized and the calcium content was significantly increased upon prolonged incubation with the compound. Taken together these findings indicate that ERG channels can impair cell proliferation. This is a novel finding that underscores new modes of regulation of mitosis by voltage-gated K+ channels and provides an unexpected insight into the current view of the mechanisms governing bone tissue proliferation.  相似文献   

8.
Serotonin (5-HT) applied to the exposed but otherwise intact nervous system results in enhanced excitability of Hermissenda type-B photoreceptors. Several ion currents in the type-B photoreceptors are modulated by 5-HT, including the A-type K+ current (IK,A), sustained Ca2+ current (ICa,S), Ca-dependent K+ current (IK,Ca), and a hyperpolarization-activated inward rectifier current (Ih). In this study, we developed a computational model that reproduces physiological characteristics of type B photoreceptors, e.g. resting membrane potential, dark-adapted spike activity, spike width, and the amplitude difference between somatic and axonal spikes. We then used the model to investigate the contribution of different ion currents modulated by 5-HT to the magnitudes of enhanced excitability produced by 5-HT. Ion currents were systematically varied within limits observed experimentally, both individually and in combinations. A reduction of IK,A or IK,Ca, or an increase in Ih enhanced excitability by 20–50%. Decreasing ICa,S produced a dramatic decrease in excitability. Reductions of IK,V produced only minimal increases in excitability, suggesting that IK,V probably plays a minor role in 5-HT induced enhanced excitability. Combinations of changes in IK,A, IK,Ca, Ih and ICa,S produced increases in excitability comparable to experimental observations. After 5-HT application, the cell's depolarization force is shifted from the Ih–ICa,S combination to predominantly Ih.  相似文献   

9.
The whole-cell patch-clamp method was used to study the membrane electrical properties of human adipocyte cells obtained by differentiating from precursors of human abdominal and mammary tissues. All differentiated cells exhibited outward currents with sigmoidal activation kinetics. The outward currents showed activation thresholds between –20 to –30 mV and slow inactivation. The ionic channels underlying the macroscopic current were highly selective for K+. Their selectivity was for typical K+ channels with relative permeabilities of K+>NH 4 + >Cs+>Na+. No evidence of any other type of voltage-gated channel was found. The potassium currents (I KV) were blocked reversibly by tetraethylammonium and barium. The IC 50 value and Hill coefficient of tetraethylammonium inhibition of I KV were 0.56 mM and 1.17 respectively. These results demonstrate that human adipose cells have voltage-dependent potassium currents.  相似文献   

10.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

11.
Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both I BK and I A could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. I BK always increased the intracellular Ca2+ concentration, while I A could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns. Action Editor: Christiane Linster  相似文献   

12.
The effects of protein phosphatase inhibitors on steady-state K+ currents in the plasma membrane of Vicia faba guard cells were studied. Cells were impaled with double barrelled electrodes to monitor membrane voltage and K+ currents under voltage clamp. Okadaic acid (OA) (1 μM), a specific inhibitor of phosphatase 1 and 2A activity, blocks inward (lK+(in)) and outward (lK+(out)) rectifying K+ channels. Both currents decreased in parallel with a sigmoidal time course with 50% inhibition at about 8 min. With 0.2 μM OA inhibition became slower and more variable (4–34 min). Inhibition did not recover by washing cells ≤ 20 min in OA-free solution. In five out of seven cells OA also induced a rise in the background conductance, which lagged behind the inhibition of K+ current. Both decaying lK*(out) and rising leak conductance caused a depolarization. OA-induced inhibition of lK+(in) and lK+(out) was without a significant effect on the kinetics of voltage-dependent current activation and deactivation. In an alternative approach, guard cells were loaded from the voltage recording pipette with the non-specific phosphatase inhibitor naphthylphosphate. After an impalement of some minutes lK+(in) and lK+(out) were small or undetectable. In conclusion inward and outward K+ channels in guard cells have a common voltage-independent mode of control which is sensitive to phosphatase inhibitors. The known specificity of OA points to a mode of action in which a net increase of protein phosphorylation through inhibition of phosphatase 1 and/or 2A activity blocks conductance of both, lK+(in) and l(out)  相似文献   

13.
14.
The membrane electroporation-induced inward current (IMEP) in pituitary tumor (GH3) cells was characterized. This current emerges irregularly when membrane hyperpolarizations to −200 mV with a holding potential of −80 mV were elicited. Neither E-4031 (10 μM), glibenclamide (30 μM), nor ZD7288 (30 μM) caused any effects on IMEP. The single-channel conductance and pore radius were estimated to be around 1.12 nS and 1.7 nm, respectively. LaCl3- and memantidine (MEM)-induced block of this current was also examined. The IC50 value for LaCl3- and MEM-induced inhibition of IMEP was 35 and 75 μM, respectively. However, unlike LaCl3, MEM (300 μM) did not exert any effect on voltage-gated Ca2+ current. In inside-out configuration, MEM applied to either external or internal surface of the excised patch did not suppress the activity of ATP-sensitive K+ channels expressed in GH3 cells, although glibenclamide significantly suppressed channel activity. This study provides the first evidence to show that MEM, a non-competitive antagonist of N-methyl D-aspartate receptors, directly inhibits the amplitude of IMEP in pituitary GH3 cells. MEM-mediated block of IMEP in these cells is unlinked to its inhibition of glutamate-induced currents or ATP-sensitive K+ currents. The channel-suppressing properties of MEM might contribute to the underlying mechanisms by which it and its structurally related compounds affect neuronal or neuroendocrine function.  相似文献   

15.
Sheng  Anqi  Zhang  Yan  Li  Guang  Zhang  Guangqin 《Neurochemical research》2018,43(2):450-457

Voltage-gated potassium (KV) currents, subdivided into rapidly inactivating A-type currents (I A) and slowly inactivating delayed rectifier currents (I K), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on KV currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K+ channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  相似文献   

16.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

17.
运用全细胞膜片钳技术研究二氧化硫衍生物对大鼠背根神经元瞬间外向钾电流(IA和ID)和延迟整流钾电流(IK)的影响。结果发现二氧化硫衍生物剂量依赖性地增大钾通道的电导,电压依赖性地增大钾电流的幅度,且这种增大作用部分可逆。二氧化硫非常显著地使延迟整流钾电流的激活过程向超极化方向移动,使瞬间外向钾电流的失活过程向去极化方向移动。10μmol/L二氧化硫衍生物作用前后,延迟整流钾电流的半数激活电压分别是(20.3±2.1)mV和(15.0±1.5)mV;IA和ID的半数失活电压分别朝去极化方向移动了6mV和7.4mV。这些结果表明二氧化硫改变了钾通道的特性,改变了神经元的兴奋性。  相似文献   

18.
Following mitosis in many cell lines, siblings remain adjoined in dyads until further cell division. We report here a series of experiments designed to ascertain the nature of this apposition in the embryonic Kc cell line of Drosophila melanogaster. We have found that (1) cell division in siblings is highly synchronized when compared to that in nonsiblings; (2) siblings in dyads are dye coupled with respect to Lucifer Yellow, but intercellular diffusion of larger molecules (FITC-dextran at 6 and 24 kDa) is retarded; (3) siblings are electrically coupled by an ungated, low-resistance intercellular connection which is resistant to treatment with octanol and CO2, both known to close gap junction channels; and (4) members of a dyad are joined by a cytoplasmic bridge. Structures resembling septate junctions are also found between siblings and between cells in aggregates. The evidence accumulated here suggests that cytokinesis in Kc dyads is incomplete, resulting in an intercellular pathway that may provide for the passage of a molecular or electrical signal that regulates subsequent mitosis.  相似文献   

19.
The resting potassium current (I KI ) in gerbil dissociated type I vestibular hair cells has been characterized under various ionic conditions in whole cell voltage-clamp. When all K+ in the patch electrode solution was replaced with Na+, (Na+) in or Cs+, (Cs+) in , large inward currents were evoked in response to voltage steps between −90 and −50 mV. Activation of these currents could be described by a Hodgkin-Huxley-type kinetic scheme, the order of best fit increasing with depolarization. Above ∼−40 mV currents became outward and inactivated with a monoexponential time course. Membrane resistance was inversely correlated with external K+ concentration. With (Na+) in , currents were eliminated when K+ was removed from the external solution or following extracellular perfusion of 4-aminopyridine, indicating that currents flowed through I KI channels. Also, reduction of K+ entry through manipulation of membrane potential reduced the magnitude of the outward current. Under symmetrical Cs+, 0 K+ conditions I KI is highly permeable to Cs+. However, inward currents were reduced when small amounts of external K+ were added. Higher concentrations of K+ resulted in larger currents indicating an anomalous mole fraction effect in mixtures of external Cs+ and K+. Received: 23 June 1999/Revised: 27 September 1999  相似文献   

20.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号