首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaves of Peperomia camptotricha contain three distinct upper tissue layers and a one-cell thick lower epidermis. Light and dark CO2 fixation rates and the activity of ribulose bisphosphate carboxylase/oxygenase and several C4 enzymes were determined in the three distinct tissue layers. The majority of the C4 enzyme activity and dark CO2 fixation was associated with the spongy mesophyll, including the lower epidermis; and the least activity was found in the median palisade mesophyll. In contrast, the majority of the C3 activity, that is ribulose bisphosphate carboxylase/oxygenase and light CO2 fixation, was located in the palisade mesophyll. In addition, the diurnal flux in titratable acidity was greatest in the spongy mesophyll and lowest in the palisade mesophyll. The spatial separation of the C3 and C4 phases of carbon fixation in P. camptotricha suggests that this Crassulacean acid metabolism plant may have low photorespiratory rates when it exhibits daytime gas exchange (that is, when it is well watered). The results also indicate that this plant may be on an evolutionary path between a true Crassulacean acid metabolism plant and a true C4 plant.  相似文献   

2.
Peperomia has species that may be C3, show Crassulacean acid metabolism (CAM), or CAM-cycling. Species that show CAM progress from C3 to CAM through CAM-cycling during leaf development. In CAM and CAM-cycling species, CAM metabolism is predominately in the upper multiple epidermis and lower spongy mesophyll, whereas C3 metabolism is localized mostly in the palisade mesophyll. Using specific protein and cDNA probes prepared from P-enolpyruvate carboxylase (PEPc) and ribulose-1,5-bisphosphate carboxylase (Rubisco), we have now studied the differential distribution of photosynthetic metabolism in Peperomia leaves using the technique of tissue printing. The tissue printing studies detected Rubisco protein in leaves of C3 P. orba, but not PEPc. Young C3 leaves of P. scandens and P. camptotricha showed Rubisco protein, but not PEPc; however, the mature leaves of these two species that have CAM showed PEPc protein and RNAs in both the multiple epidermis and spongy mesophyll. In contrast, Rubisco protein and RNAs were present throughout the leaf. The tissue printing data are consistent with our previously published data showing the differential distribution of photosynthetic metabolism in leaves of Peperomia. Although the tissue printing technique is qualitative, coupled with quantitative data it has proven useful for the study of function related to structure.  相似文献   

3.
During the development of Peperomia camptotricha leaves, metabolism changes from C3-photosynthesis to Crassulacean acid metabolism (CAM). The youngest leaves showed no diurnal fluctuation of organic acids or P-enolpyruvate carboxylase (PEPc) activity. There was little evidence for PEPc protein using PEPc antibodies prepared from the CAM form of PEPc, nor was there evidence for PEPc mRNA when tested using a cDNA probe made from CAM P. scandens. As leaves matured, there was a parallel increase in titratable acidity, PEPc activity, PEPc protein, and PEPc mRNA. In leaf whorls 1 through 6, there was a significant linear correlation between the diurnal fluctuation of organic acids and PEPc activity indicating a functional relationship. The specific activity of PEPc increased as leaves matured and the Km (PEP) decreased indicating that the enzyme was becoming more active. The ratio of PEPc protein to PEPc mRNA decreased as leaves matured. During the expression of CAM, the spongy mesophyll where most of the CAM activity occurs increased in thickness and per cent air space, whereas the palisade mesophyll where most of the C3 activity occurs did not increase in size dramatically. The diurnal fluctuation of organic acids and the expression of PEPc activity, protein, and mRNA increased as the thickness of the spongy mesophyll increased. During the expression of CAM in Peperomia camptotricha, there appears to be coordinated expression of PEPc mRNA, protein, and activity, the commencement of diurnal organic acid fluctuation, and the development of the CAM-like spongy mesophyll. Thus the evidence suggests that CAM in this species is expressed during normal development and not in response to environmental signals.  相似文献   

4.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

5.
6.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

7.
The occurrence of the Crassulacean acid metabolism (CAM) was studied in four epiphytic species of the Gesneriaceae: two neotropical species, Codonanthe crassifolia and Columnea linearis, and two paleotropical species, Aeschynanthus pulcher and Saintpaulia ionantha. Gas exchange parameters, enzymology, and leaf anatomy, including mesophyll succulence and relative percent of the mesophyll volume occupied by airspace, were studied for each species. Codonanthe crassifolia was the only species to show nocturnal CO2 uptake and a diurnal organic acid fluctuation. According to these results, Codonanthe crassifolia shows CAM-cycling under well-watered conditions and when subjected to drought, it switches to CAM-idling. Other characteristics, such as leaf anatomy, mesophyll succulence, and PEP carboxylase and NADP malic enzyme activity, indicate attributes of the CAM pathway. All other species tested showed C3 photosynthesis. The most C3-like species is Columnea linearis, according to the criteria tested in this investigation. The other two species show mesophyll succulence and relative percent of the leaf volume occupied by airspace within the CAM range, but no other characters of the CAM pathway. The leaf structure of certain genera of the Gesneriaceae and of the genus Peperomia in the Piperaceae are similar, both having an upper succulent, multiple epidermis, a medium palisade of one or a few cell layers, and a lower, succulent spongy parenchyma not too unlike CAM photosynthetic tissue. We report ecophysiological similarities between these two distantly related families. Thus, the occurrence of CAM-cycling may be more common among epiphytic species than is currently known.  相似文献   

8.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

9.
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO2 concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F V/F M or F V/F P) of the different cell layers. Evidence is presented for a step gradient of F V/F P ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F V/F P ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.  相似文献   

10.
The influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation of the photosynthetic apparatus was examined on 4-weeks-old climate chamber-grown Solanum nigrum plant. To have an indication on the relative performance of the photosynthetic apparatus of ALS-treated plants, the level of carbon dioxide (CO2) fixation, the relative quantum efficiency of photosystem I (ΦPSI) or photosystem II (ΦPSII) electron transport and leaf chlorophyll content were assessed for both control and treated plants at 2, 4 and 7 days after application of the herbicide. Results indicated a progressive inhibition of the level of CO2 fixation, the relative quantum efficiency of photosystem I (ФPSI) and II (ФPSII) electron transport and the leaf chlorophyll content already 2 days after application of the herbicide. The linear relationship between the photosystem I and II was unaltered by herbicidal treatment and was sustained under conditions where large changes in pigment composition of the leaves occurred. It appears that the stress-induced loss of leaf chlorophyll is not a catastrophic process but rather is the consequence of a well-organised breakdown of components. Under photorespiratory and non-photorespiratory conditions, the relationship between the index of electron transport flow through photosystem I and II and the rate of CO2 fixation is altered so that electron transport becomes less efficient at driving CO2 fixation.  相似文献   

11.
Summary Field measurements of photosynthetic CO2 exchange were made on saplings of a C4 tree species, Euphorbia forbesii, and a C3 tree species, Claoxylon sandwicense, in a shaded mesic forest on Oahu, Hawaii. Both species had light responses typical of those generally found in shade plants. Light saturated photosynthetic rates were 7.15 and 4.09 mol m2 s1 and light compensation points were 6.3 and 1.7 mol m2 s1 in E. forbesii and C. sandwicense, respectively. E. forbesii maintained a higher mesophyll conductance and a higher water use efficiency than C. sandwicense as is typically found in comparisons of C4 and C3 plants. Under natural light regimes, both species maintained positive CO2 uptake rates over essentially the entire day because of low respiration rates and light compensation points. However, photosynthesis during sunflecks accounted for a large fraction of the daily carbon gain. The results show that the carbon-gaining capacity of E. forbesii is comparable to that of a C3 species in a moderately cool, shaded forest environment. There appears to be no particular advantage or disadvantage associated with the C4 photosynthetic pathway of E. forbesii in this environment.  相似文献   

12.
The localization of the key photoreductive and oxidative processes and some stress-protective reactions within leaves of mesophytic C3 plants were investigated. The role of light in determining the profile of Rubisco, glutamate oxaloacetate transaminase, catalase, fumarase, and cytochrome-c-oxidase across spinach leaves was examined by exposing leaves to illumination on either the adaxial or abaxial leaf surfaces. Oxygen evolution in fresh paradermal leaf sections and CO2 gas exchange in whole leaves under adaxial or abaxial illumination was also examined. The results showed that the palisade mesophyll is responsible for the midday depression of photosynthesis in spinach leaves. The photosynthetic apparatus was more sensitive to the light environment than the respiratory apparatus. Additionally, examination of the paradermal leaf sections by optical microscopy allowed us to describe two new types of parenchyma in spinach—pirum mesophyll and pillow spongy mesophyll. A hypothesis that oxaloacetate may protect the upper leaf tissue from the destructive influence of active oxygen is presented. The application of mathematical modeling shows that the pattern of enzymatic distribution across leaves abides by the principle of maximal ecological utility. Light regulation of carbon metabolism across leaves is discussed.  相似文献   

13.
Cladophora glomerata (L.) Kütz. is the dominant filamentous algae of the river Ilm, Thuringia, Germany. For most of the year it can be found at open as well as at shaded sites. Photosynthetic acclimation of C. glomerata to different light intensities was detected by chlorophyll fluorescence measurements and pigment analysis. Cladophora glomerata from highlight sites showed decreased values of efficiency of open photosystem II (Fv/Fm) as compared with C. glomerata from low‐light sites. Winter populations revealed higher Fv/Fm values than summer populations. A light‐induced decrease in efficiency of the closed photosystem II was observed at increasing irradiance intensities. The decrease was higher in C. glomerata from shaded sites compared with plants from open sites. Differences in the photosynthetic electron transport rate of different populations of C. glomerata were shown by photosynthesis–irradiance curves. Summer populations from high‐light sites yielded higher maximum electron transport rates than plants from low‐light sites, whereas winter populations exhibited significantly decreased values compared with the summer populations. Results of the analysis of photosynthetic pigments corresponded with data from chlorophyll fluorescence measurements. In addition to these long‐term acclimation effects, C. glomerata expressed its ability to cope with rapid changes in the light environment by the de‐epoxidation of violaxanthin during exposure to high light intensities.  相似文献   

14.
Compared to the large number of studies focused on the factors controlling C3 photosynthesis efficiency, there are relatively fewer studies of the factors controlling photosynthetic efficiency in C4 leaves. Here, we used a dynamic systems model of C4 photosynthesis based on maize (Zea mays) to identify features associated with high photosynthetic efficiency in NADP-malic enzyme (NADP-ME) type C4 photosynthesis. We found that two additional factors related to coordination between C4 shuttle metabolism and C3 metabolism are required for efficient C4 photosynthesis: (1) accumulating a high concentration of phosphoenolpyruvate through maintaining a large PGA concentration in the mesophyll cell chloroplast and (2) maintaining a suitable oxidized status in bundle sheath cell chloroplasts. These identified mechanisms are in line with the current cellular location of enzymes/proteins involved in the starch synthesis, the Calvin–Benson cycle and photosystem II of NADP-ME type C4 photosynthesis. These findings suggested potential strategies for improving C4 photosynthesis and engineering C4 rice.

High levels of PGA and PEP in mesophyll cell chloroplasts and a suitable oxidation state in bundle sheath cell chloroplasts are the requirements for efficient C4 photosynthesis.  相似文献   

15.
Abstract The influences of shading during growth upon the activities of several photosynthetic enzymes were examined in NADP-ME type C4 grasses from open (Zea mays L.) and shaded (Paspalum conjugation Berg.) habitats. The substantial species-difference in maximum photosynthetic rate observed under a high light regime was correlated with large differences in both enzyme activities and leaf protein contents. With the exception of RuBP carboxylase activity, other photosynthetic enzyme activities in Z. mays were reduced by shading to a similar extent as maximum photosynthetic rate. In contrast, only PEP carboxylase and pyruvate, Pi dikinase activities were decreased by shading in P. conjugatum. As with maximum photosynthetic rate, other photosynthetic enzyme activities in P. conjugatum were relatively insensitive to irradiance during growth. Under a low photon flux density of photosynthetically active radiation (50 μmol m?2 s?1), the flow of [14C] label through photosynthetic intermediates in intact, shade-grown leaves of P. conjugatum was typical of C4 metabolism. This provides incontrovertible proof for the occurrence of C4 photosynthesis in shaded habitats.  相似文献   

16.
Variable factors affecting the enzymatic isolation of mesophyll protoplasts from Triticum aestivum (wheat), a C3 gras, and mesophyll protoplasts and bundle sheath strands from Digitaria sanguinalis (crabgrass), a C4 grass, have been examined with respect to yields and also photosynthetic capacity after isolation. Preparations with high yields and high photosynthetic capacity were obtained when small transverse leaf segments were incubated in enzyme medium in the light at 30°C, without mechanical shaking and without prior vacuum infiltration. Best results were obtained with an enzyme medium that included 0.5 M sorbitol, 1 mM MgCl2, 1 mM KH2PO4, 2% cellulase and 0.1% pectinase at pH 5.5. In gerneral, leaf age and leaf segment size were important factors, with highest yields and photosynthetic capacities obtained from young leaves cut into segments less than 0.8 mm. To facilitate the cutting of such small segments, a mechanical leaf cutter is described that uniformly (± 0.05 mm) cuts leaf tissue into transverse segments of variable size (0.4–2 mm). Isolations that required more than roughly 4 h gave poor yields with reduced photosynthetic capacity; however, using the optimum conditions described, functional preparations could be roughly 2 h. High rates of light dependent CO2 fixation by the C4 mesophyll protoplasts required the addition of pyruvate and low levels of oxalacetate, while isolated bundle sheath strands and C3 mesophyll protoplasts supported CO2 fixation without added substrates. Rates of CO2 fixation by isolated wheat protoplasts generally exceeded the reported rates of whole leaf photosynthesis. Wheat mesophyll protoplasts and crabgrass bundle sheath strands were stable when stored at 4°C while C4 mesophyll protoplasts were stable when stored at 25°C.  相似文献   

17.
Photosynthetic and anatomic responses of peanut leaves to cadmium stress   总被引:1,自引:0,他引:1  
Cadmium (Cd) treatments caused an inhibition in the net photosynthetic rate (P N) of peanut (Arachis hypogaea) plants, due to the reduction of stomatal conductance (g s) and photosynthetic pigment contents, as well as the alteration in leaf structure. The decrease of the transpiration rate and g s might result from the Cd-induced xerophyte anatomic features of leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as abundant and small stomata). The decline of P N was independent of the impairment in photosystem 2.  相似文献   

18.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

19.
Intact mesophyll and bundle sheath chloroplasts wee isolated from the NADP-malic enzyme type C4 plants maize, sorghum (monocots), and Flaveria trinervia (dicot) using enzymic digestion and mechanical isolation techniques. Bundle sheath chloroplasts of this C4 subgroup tend to be agranal and were previously reported to be deficient in photosystem II activity. However, following injection of intact bundle sheath chloroplasts into hypotonic medium, thylakoids had high Hill reaction activity, similar to that of mesophyll chloroplasts with the Hill oxidants dichlorophenolindophenol, p-benzoquinone, and ferricyanide (approximately 200 to 300 micromoles O2 evolved per mg chlorophyll per hour). In comparison to that of mesophyll chloroplasts, the Hill reaction activity of bundle sheath chloroplasts of maize and sorghum was labile and lost activity during assay. Bundle sheath chloroplasts of maize also exhibited some capacity for 3-phosphoglycerate dependent O2 evolution (29 to 58 micromoles O2 evolved per milligram chlorophyll per hour). Both the mesophyll and bundle sheath chloroplasts were equally effective in light dependent scavenging of hydrogen peroxide. The results suggest that both chloroplast types have noncyclic electron transport and the enzymology to reduce hydrogen peroxide to water. The activities of ascorbate peroxidase from these chloroplast types was consistent with their capacity to scavenge hydrogen peroxide.  相似文献   

20.
J. P. Knox  A. D. Dodge 《Planta》1985,164(1):30-34
Eosin, a known generator of singlet oxygen, applied to leaf discs of Pisum sativum L. sensitized the inhibition of photosynthesis. Analysis of partial photosynthetic electron-transport reactions and of the kinetics of variable chlorophyll fluorescence located the damage at photosystem II. This injury required the presence of oxygen and was also caused by the irradiation of eosin-treated leaf tissue with green light. The role of oxygen and photodynamic reactions in the susceptibility of photosystem II to damage by environmental stresses is discussed.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - PSI photosystem I - PSII photosystem II - 1O2 singlet oxygen - Tricine N-[2-hydroxyl-3,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号