首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present report, we investigated zinc, copper and metallothionein (MT) contents in zebrafish oocytes and embryos. Our results demonstrate that the metal content increases during oocytes maturation. Zinc increases from 30 ng/oocyte (stage-1 oocytes) to 100 ng/oocyte (stage-3 oocytes); copper varied from 1 ng/oocyte (stage-1 oocytes) to 3.5 ng/oocyte (stage-3 oocytes). During embryogenesis, zinc and copper contents dramatically increase after fertilisation around the 512-cells stage, then slowly decrease until the mid-gastrula stage. During oocyte growth, the changes in the MT level are proportional to metal content, whereas during embryogenesis the pattern of MT accumulation does not parallel that of the two metals. Indeed, the maternal pool of MT decreases steadily during the early stages of the development until the gastrula stage. We have examined the effect of cadmium on the expression of MT during zebrafish development. After cadmium exposure, MT content increases in embryos at the blastula stage, whereas no induction occurs in embryos at the gastrula stage. However, pre-treatment of embryos at the gastrula stage with 5-aza-2'-deoxycytidine induces MT synthesis following exposure to cadmium. These observations show that changes in metal levels are not correlated to MT content in the embryo, whereas DNA methylation is one of the factors regulating MT expression.  相似文献   

2.
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was also concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.  相似文献   

3.
The ontogeny of hepatic tissue growth and trace metal deposition was examined in the developing turkey embryo and newly hatched poult. Hepatic concentrations of zinc and iron in the embryo declined by about twofold between day 16 of incubation and hatching. Hepatic copper concentration increased approximately fourfold by day 23 of incubation and then declined rapidly through hatching. During the post-hatching period, hepatic zinc concentration increased twofold by day 10, whereas a small increase in hepatic iron concentration occurred just prior to hatching and continued through the third day post-hatching. A significant positive correlation existed between hepatic zinc and iron concentrations in the developing embryo. The concentrations of both these metals were inversely correlated with hepatic copper concentration during the same time. Total hepatic zinc and iron content increased throughout the entire time studied, whereas total copper content increased up to hatching and then declined during the first week post-hatching. The most rapid phase of hepatic metal accretion differed for each metal, with zinc being rapidly accumulated during the post-hatching period, copper during the last half of incubation and iron at about the time of hatching and the first few days post-hatching. Each of these metals demonstrated a specific relationship to hepatic tissue growth that changed between the embryonic and neonatal periods of development.  相似文献   

4.
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

6.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Various factors, such as quality of the oocyte, oxygen tension, embryo density, and kind of energy substrate during in vitro production of embryos may affect the rate of preimplantation embryo development. In the present study we used 12553 bovine oocytes aspirated from slaughterhouse ovaries to evaluate various culture conditions that would increase in vitro production of advanced stages of preimplantation embryos. The morphological quality of the oocyte based on the compactness and number of layers of cumulus cells had significant positive effects on the rates of in vitro maturation, fertilization and development to the morula and blastocyst stages. None of the corona-enclosed or nude oocytes progressed beyond the 8- to 16-cell stage. The level of oxygen (5 or 20%) did not affect the proportion of one-cell embryos undergoing cleavage or progressing to morula and blastocyst stages. The rate of development of one-cell embryos originating from inferior quality oocytes was significantly improved when cultured in groups of 40 instead of 20 embryos per 0.5 mL medium. In the presence of cumulus cells, glucose had beneficial effects on in vitro maturation and subsequent development of IVM-IVF zygotes. The presence of serum improved the rate of in vitro development of one-cell embryos. Minimum Essential Medium supplemented with energy substrates according to the findings of metabolic studies was less effective in supporting in vitro maturation and subsequent development than TCM-199. In conclusion, morphological grading of immature oocytes is an appropriate selection criterion for their developmental ability. Embryo yields from low quality oocytes can be increased by culturing them in large groups. Serum is not essential for in vitro generation of embryos but its addition improves rates of success.  相似文献   

8.
Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the particulate fraction whereas 80% of zinc was in the soluble form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments.Seasonal differences in total metal content of waters suggested that concentrations of copper, zinc and iron increased during. periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal.In the free-living Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.Department of Applied Biology, Cambridge  相似文献   

9.
Anaemia is a widespread problem especially in the tropics. Among adolescent girls, it has negative consequences on growth, school performance, morbidity and reproductive performance. A cross-sectional study was conducted to investigate the prevalence of anaemia, iron, folate, zinc and copper deficiencies amongst adolescent schoolgirls in New Halfa, eastern Sudan, and to examine the relationship of these micronutrients with haemoglobin (Hb) levels. Out of 187 adolescent schoolgirls, 181 (96.8%) had anaemia (Hb?<?12 g/dl); 21% had mild anaemia (Hb 11.0–11.9 g/dl); 66.8.1% had moderate anaemia (Hb 8.0–10.9 g/dl), and 12.1% had severe anaemia (Hb?<?8 g/dl), respectively. Iron deficiency (S-ferritin?<?12 μg/l), iron deficiency anaemia (<12 m/dl and S- ferritin?<?12 μg/l) and folate deficiency (S-folate?<?3 ng/ml) were prevalent in 17.6%, 16.5% and 69% of these girls, respectively. Nine percent and 5.9% of these girls had zinc (<75 μg/ml) and copper deficiency (<75 μg/ml), respectively. Twenty-six (14%) girls had ≥2 micronutrient deficiencies. S-ferritin and zinc were significantly lower in patients with severe anaemia. Haemoglobin levels were significantly positively correlated with zinc levels (r?=?0.161, P?=?0.03) and with copper levels (r?=?0.151, P?=?0.03). Thus, interventions are required to prevent and control anaemia in this setting. Further research is needed.  相似文献   

10.
Recently, iron deficiency has been connected with a heterogeneous accumulation of manganese in the rat brain. The striatum is particularly vulnerable, for there is a significant negative correlation between accumulated manganese and gamma-aminobutyric acid levels. The effect of dietary iron deficiency on the distribution of zinc and copper, two other divalent metals with essential neurobiological roles, is relatively unexplored. Thus, the primary goal of this study was to examine the effect of manipulating dietary iron and manganese levels on the concentrations of copper, iron, manganese and zinc in five rat brain regions as determined with inductively coupled plasma mass spectrometry analysis. Because divalent metal transporter has been implicated as a transporter of brain iron, manganese, and to a lesser extent zinc and copper, another goal of the study was to measure brain regional changes in transporter levels using Western blot analysis. As expected, there was a significant effect of iron deficiency (P < 0.05) on decreasing iron concentrations in the cerebellum and caudate putamen; and increasing manganese concentrations in caudate putamen, globus pallidus and substantia nigra. Furthermore, there was a significant effect of iron deficiency (P < 0.05) on increasing zinc concentration and a statistical trend (P = 0.08) toward iron deficiency-induced copper accumulation in the globus pallidus. Transporter protein in all five regions increased due to iron deficiency compared to control levels (P < 0.05); however, the globus pallidus and substantia nigra revealed the greatest increase. Therefore, the globus pallidus appears to be a target for divalent metal accumulation that is associated with dietary iron deficiency, potentially caused by increased transporter protein levels.  相似文献   

11.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

12.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

13.
Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague–Dawley rats, which received the Lieber–DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity.  相似文献   

14.
Concentrations of copper, zinc, and iron were analyzed and compared in a number of tissues of adjuvant arthritic rats following 22 d of chronic treatment (per os) with either vehicle, aspirin or copper aspirinate, at doses of 100 mg/kg, 200 mg/kg, or 400 mg/kg. Such chronic treatment resulted in a negative balance in copper, zinc, and iron in many tissues. Among the tissues examined, liver and kidney exhibited the greatest changes in metal concentrations; brain and skeletal muscle exhibited the least. Arthritis-induced changes in the concentrations of all three metals in the liver were reversed upon treatment with aspirin. Treatment with copper aspirinate, on the other hand, resulted in an extremely high accumulation of copper in the liver. Arthritis-induced changes in copper, zinc, and iron concentrations in the pancreas and copper concentration in the plasma were generally not reversed upon treatment with either aspirin or copper aspirinate. Among the three metals examined, the degree of change observed as a result of drug treatments was greatest for iron and least for zinc. Finally, it appeared that the effects of aspirin and copper aspirinate on tissue metal concentrations were independent of the antiarthritic effects of these compounds.  相似文献   

15.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Concentration of five heavy metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), and zinc (Zn) in wheat collected from silages of Golestan Province, Iran, was determined using atomic absorption spectroscopy. Dry ashing method was applied for precise determination of the five heavy metal contents. The concentrations of heavy metals were recorded as the following: Pb (0.013–0.14), Cd (0.008–0.031) by graphite furnace method and Cu (0.48–6.2), Fe (58.50–406.9), and Zn (3.41–32.75) by flame method, all in mg.kg?1. The mean concentration of all the aforementioned heavy metals was (0.057 ± 0.003), (0.016 ± 0.005), (2.7 ± 0.17), (111.2 ± 21), and (5.7 ± 0.22) mg.kg?1, respectively. The level of heavy metals decreased in the order of Fe>Zn>Cu>Pb > Cd. Highest amount was related to Fe and the lowest amount to Cd. Concentrations of heavy metals in all the wheat samples were below the permissible limits set by the Food and Agriculture Organization/World Health Organization and Iranian National Standard Organization and did not pose any threat to the health of consumers.  相似文献   

17.
目的:探讨肺炎患儿血清维生素D及微量元素监测的临床意义。方法:选取我院2015年1月-2016年1月收治的600例肺炎患儿为观察组及同期来我院体检的健康儿童400例为对照组,检测两组受试儿童的维生素D、铁、锌、钙、铜、镁水平。结果:观察组患儿锌、铁缺乏比例均明显高于健康儿童(P0.05),两组钙、铜、镁缺乏比例相比差异无统计学意义(P0.05)。观察组1岁以下(包括1岁,婴儿期)、1-3岁(包括3岁,幼儿期)、3-6岁(包括6岁,学龄前)患儿体内锌、铁含量明显低于同年龄段健康儿童(P0.05),各组钙、铜、镁含量相比差异无统计学意义(P0.05)。两组受试儿童体内25-羟基维生素D含量及其缺乏情况相比差异均无统计学意义(P0.05)。结论:锌和铁缺乏可能与儿童肺炎的发生发展具有一定的关系,及时补充锌和铁有助于提高患儿免疫力,促进患儿恢复。  相似文献   

18.
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency.  相似文献   

19.
The variation of tissue copper, zinc, iron, calcium, magnesium, potassium and sodium content of inbred C57BL/6 mice during the infective cycle of Lewis lung carcinoma have been studied. Tissue calcium, magnesium, potassium and sodium concentrations were well maintained during the infective cycle, probably because of their large dietary availability, copper, zinc and iron, however, showed a progressive decrease in their tissue concentrations. Liver zinc increased in parallel with the metastasising process. The important decrease in tissue iron observed agress with the characterized hypoferric response to infection. However, when the losses of metals were considered on a global organism basis, the loss of iron was not paralleled by an increase in tumor iron, but a global loss was observed. The hypoferric response did not deter tumor growth, as this was able to carry on its development with significantly decreasing neoplastic tissue iron content. The only metal actively concentrated by the tumoral mass was sodium.  相似文献   

20.
Electrophysiological techniques were used to study ion currents in the ascidian Ciona intestinalis oocyte plasma membranes during different stages of growth and meiosis. Three stages (A, B, C) of immature oocytes were discriminated in the ovary, with the germinal vesicle (GV) showing specific different features of growth and maturation. Stage A (pre‐vitellogenic) oocytes exhibited the highest L‐type Ca2+current activity, and were incompetent for meiosis resumption. Stage B (vitellogenic) oocytes showed Na+ currents that remained high during the maturation, up to the post‐vitellogenic stage C oocytes. The latter had acquired meiotic competence, undergoing spontaneous maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation plays a specific role in embryo development. Spontaneous maturation was inhibited at low pH whereas trypsin was able to trigger germinal vesicle breakdown (GVBD) regardless of pH; in addition spontaneous maturation was not affected by removal of follicle cells or by inhibiting junctional communication between oocyte and follicle cells. Taken together these results imply: (i) Ca2+ and Na+ currents are involved in meiotic progression, growth, and acquisition of meiotic competence; (ii) trypsin‐like molecules may have a role as candidates for providing the physiological stimulus to resume meiosis. Finally, we provide evidence that follicle cells in Ciona are not involved in triggering GVBD as it occurs in other ascidians. Mol. Reprod. Dev. 76: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号