首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biologically active metabolite of vitamin D3, 1,25 (OH)2 D3, exerts important immunoregulatory effects in addition to being a central mediator of calcium/phosphate metabolism. Utilizing an interleukin 1 responsive murine T cell line and 125I-interleukin 1α, we show that 1,25 (OH)2 D3 (5,50 nM) enhanced 125I-interleukin 1α binding up to almost 2-fold over control. This 1,25 (OH)2 D3 effect occurred in a dose-dependent manner and was detectable after 24 h but not before 7 h of culture. Scatchard analysis of 125I-interleukin 1α binding data demonstrated that 1,25 (OH)2 D3 enhanced interleukin 1 receptor number without a significant change in affinity. The biologically less potent metabolite of vitamin D3, 25 (OH) D3, also augmented 125I-interleukin 1α binding but at steroid levels 2–3 log orders greater than 1,25 (OH)2 D3. This observation, combined with the presence of high-affinity 3H-1,25 (OH)2 D3 receptors (88 sites/cell, K = 0.45 nM) in cytosolic extracts, strongly suggests that the nuclear vitamin D receptor mediates this steroid's effect on interleukin 1 receptor expression. Based on the capacity of an anti-type 1 interleukin 1 receptor monoclonal antibody (35F5) to block 1,25 (OH)2 D3-enhanced 125I-interleukin 1α binding, we conclude that this steroid augments type 1 interleukin 1 receptor expression. When combined with interleukin 1, a cytokine that also impacts MD10 interleukin 1 receptor expression, 1,25 (OH)2 D3 enhanced interleukin 1 receptor expression. Northern blots hybridized with a 32P-type 1 interleukin 1 receptor cDNA probe show that 1,25 (OH)2 D3 enhanced type 1 interleukin 1 receptor steady state mRNA levels. Functionally, 1,25 (OH)2 D3 pretreatment augmented the MD10 proliferative response to suboptimal levels of interleukin 1 (< 100 fM interleukin 1α). These findings further support 1,25 (OH)2 D3's role as an immunoregulatory molecule and provides a possible mechanism by which this steroid could potentiate certain immune activities.  相似文献   

2.
Chang JH  Cha HR  Lee DS  Seo KY  Kweon MN 《PloS one》2010,5(9):e12925

Background

Vitamin D3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE); however, the direct effect of vitamin D3 on T cells is largely unknown.

Methodology/Principal Findings

In an in vitro system using cells from mice, the active form of vitamin D3 (1,25-dihydroxyvitamin D3) suppresses both interleukin (IL)-17-producing T cells (TH17) and regulatory T cells (Treg) differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce the amount of IL-2 regulates the generation of Treg cells, but not TH17 cells. Under TH17-polarizing conditions, 1,25(OH)2D3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH)2D3''s negative regulation of TH17 development is still defined in the IL-10−/− T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH)2D3 inhibits IL-17 production in STAT1−/− T cells. Most interestingly, 1,25(OH)2D3 negatively regulates CCR6 expression which might be essential for TH17 cells to enter the central nervous system and initiate EAE.

Conclusions/Significance

Our present results in an experimental murine model suggest that 1,25(OH)2D3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for TH17-mediated autoimmune diseases.  相似文献   

3.
Cytosol prepared from small intestine of vitamin D-sufficient rabbits contains a specific high-affinity binding protein for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This binding protein sediments at 3.0–3.5 S in sucrose density gradients containing 0.3 m KCl. Scatchard analysis using intestinal cytosol demonstrated a Kd of 0.05 nm and a maximum binding capacity of 92 fmol/mg cytosol protein for 1,25(OH)2D3 at 4°C. Competitive binding studies with various metabolites of vitamin D showed a relative binding affinity of this protein for 1,25(OH)2D3 > 25-hydroxy-vitamin D3 > vitamin D3. With 200 μg of rabbit intestinal cytosol protein, as little as 1.0–2.5 pg of 1,25(OH)2D3 reproducibly displaced the tracer sterol from the binding protein. Analyses of human plasma 1,25(OH)2D3 content yielded values consistent with published results. The vitamin D-replete rabbit provides a convenient, plentiful, and inexpensive source of binding protein for 1,25(OH)2D3 assays.  相似文献   

4.
The emergence of regulatory T cells (Tregs) as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+CD25highCD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+CD25highCD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH)2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH)2D3 and TX527 promote the induction of IL-10-producing CD4+CD25highCD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes.  相似文献   

5.
The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.  相似文献   

6.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1α-(hydroxymethyl)-3β-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1β-(hydroxymethyl)-3α-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation–dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Biochem. 66:457–470, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The active form of vitamin D, 1,25(OH)2D3, has a broad range of effects on bone, however, its role in the quality of bone matrix is not well understood. In this study, using an osteoblastic cell (MC3T3-E1) culture system, the effects of 1,25(OH)2D3 on collagen cross-linking and related enzymes, i.e., lysyl hydroxylases (LH1-3) and lysyl oxidases (LOX, LOXL1-4), were examined and compared to controls where cells were treated with cholecalciferol or ethanol. When compared to the controls, gene expressions of LH1, LH2b and LOXL2 were significantly upregulated by 1,25(OH)2D3 up to 72 h of culture. In addition, hydroxylysine (Hyl), Hyl aldehyde (Hylald), Hylald-derived cross-links and a total number of cross-links of collagen were significantly higher and the cross-link maturation was accelerated in the 1,25(OH)2D3 treated group. These results demonstrate that 1,25(OH)2D3 directly regulates collagen cross-linking in this culture system likely by upregulating gene expression of specific LH and LOX enzymes.  相似文献   

8.
This study aims to explore effects of 1,25(OH)2D3 and vitamin D receptor (VDR) on peripheral CD4+/CD8+ double‐positive (DP) T lymphocytes in systemic lupus erythematosus (SLE). MRL‐LPr/LPr mice with SLE (n = 20) and normal MRL mice (n = 20) were assigned into the control group (normal mice, without feeding with 1,25(OH)2D3), the 1,25(OH)2D3 group (SLE mice, feeding with 1,25(OH)2D3), the VDR‐knock‐in + 1,25(OH)2D3 group (SLE mice, VDR‐knock‐in, feeding with 1,25(OH)2D3) and the VDR‐knockout group (normal mice, VDR‐knockout, without feeding with 1,25(OH)2D3) (n = 10 per group). Levels of T lymphocytes were measured by flow cytometry. The mRNA and proteins expressions of inflammatory factors were measured by qRT‐PCR and ELISA. Extracellular signal‐regulated kinase‐1/2 (ERK1/2) expression was measured by Western blotting. Compared with normal mice, SLE mice showed reduced levels of CD4+, CD4+/CD8+ ratio, and DP lymphocytes. The levels of SLE‐related indicators all increased significantly, followed with severe skin ulcers and urinary system infection. With the increase in time, skin ulcers and urinary system infection were significantly improved, levels of CD4+, CD4+/CD8+ ratio, and DP lymphocytes increased, and levels of SLE‐related indicators all decreased in the 1,25(OH)2D3 group. There were no significant changes in bioindicators in the control and the VDR‐knock‐in + 1,25(OH)2D3 groups. The symptoms of SLE gradually occurred in the VDR‐knockout group. This study demonstrates that VDR and 1,25(OH)2D3 could elevate CD4+/CD8+ DP T lymphocytes and reduce expressions of inflammatory factors, thus inhibiting the development and progression of SLE.  相似文献   

9.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] receptor was characterized after partial purification of thymus cytosol by ammonium sulfate fractionation. The 1,25-(OH)2D3 receptor sediments at 3.7S in 5–20% sucrose gradients. The binding of 1,25-(OH)2D3 in thymic cytosol was a saturable process with high affinity (Kd = 0.12?0.48 nM) at 4°C. Competition for 1,25-(OH)2[3H]D3 receptor by nonradioactive analogs demonstrated the affinities of these analogs to be in order; 1,25-(OH)2D3 = 1,24R,25-(OH)3D3 = 1,25S,26-(OH)3D3 = 1,25R,26-(OH)3D3 > 1,25-(OH)2D3-26,23 lactone > 25-OHD3 > 23R,25-(OH)2D3 > 24R,25-(OH)2D3 > 23S,25-(OH)2D3 ? 25-OHD3-26,23 lactone. The receptor bound to DNA cellulose columns in low salt buffer and eluted as a single peak at 0.21 M KCl. These findings provide evidence that the thymus possesses a 1,25-(OH)2D3 receptor with properties indistinguishable from 1,25-(OH)2D3 receptors in other tissues.  相似文献   

10.
Vitamin D is synthesised by ultraviolet (UV) irradiation of skin and is hypothesized to be a direct mediator of the immunosuppression that occurs following UV radiation (UVR) exposure. Both UVR and vitamin D drive immune responses towards tolerance by ultimately increasing the suppressive activities of regulatory T cells. To examine a role for UVR-induced vitamin D, vitamin D3-deficient mice were established by dietary vitamin D3 restriction. In comparison to vitamin D3-replete mice, vitamin D3-deficient mice had significantly reduced serum levels of 25-hydroxyvitamin D3 (25(OH)D3, <20 nmol.L−1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, <20 pmol.L−1). Following either acute erythemal UVR, or chronic sub-erythemal UVR (8 exposures over 4 weeks) treatment, serum 25(OH)D3 levels significantly increased in vitamin D3-deficient female but not male mice. To determine if UVR-induced vitamin D was a mediator of UVR-induced systemic immunosuppression, responses were measured in mice that were able (female) or unable (male) to increase systemic levels of 25(OH)D3 after UVR. Erythemal UVR (≥4 kJ/m2) suppressed contact hypersensitivity responses (T helper type-1 or -17), aspects of allergic airway disease (T helper type-2) and also the in vivo priming capacity of bone marrow-derived dendritic cells to a similar degree in female and male vitamin D3-deficient mice. Thus, in male mice, UVR-induced 25(OH)D3 is not essential for mediating the immunosuppressive effects of erythemal UVR.  相似文献   

11.
12.
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion.  相似文献   

13.
The mechanisms that control fibroproliferation and matrix deposition in lung fibrosis remain unclear. We speculate that vitamin D deficiency may contribute to pulmonary fibrosis since vitamin D deficiency has been implicated in several diseases. First, we confirmed the presence of vitamin D receptors (VDRs) in cultured NIH/3T3 and lung fibroblasts. Fibroblasts transfected with a vitamin D response element–reporter construct and exposed to the active vitamin D metabolite, 1,25(OH)2D3, showed increased promoter activity indicating VDR functionality in these cells. Testing the effects of 1,25(OH)2D3 on fibroblasts treated with transforming growth factor β1 (TGFβ1), considered a driver of many fibrotic disorders, we found that 1,25(OH)2D3 inhibited TGFβ1-induced fibroblast proliferation in a dose-dependent fashion. 1,25(OH)2D3 also inhibited TGFβ1 stimulation of α-smooth muscle actin expression and polymerization and prevented the upregulation of fibronectin and collagen in TGFβ1-treated fibroblasts. Finally, we examined how 1,25(OH)2D3 affects epithelial–mesenchymal transformation of lung epithelial cells upon exposure to TGFβ1. We showed that the TGFβ1-induced upregulation of mesenchymal cell markers and abnormal expression of epithelial cell markers were blunted by 1,25(OH)2D3. These observations suggest that under TGFβ1 stimulation, 1,25(OH)2D3 inhibits the pro-fibrotic phenotype of lung fibroblasts and epithelial cells.  相似文献   

14.
The essential role of vitamin D throughout the life of most mammals and birds as a mediator of calcium homeostasis is well established. In view of the complex endocrine system existent for the regulated metabolism of vitamin D3 to both 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and 24R,25-dihydroxyvitamin D3 [24R,25-(OH)2D3] (both produced by the kidney), an intriguing problem is to elucidate whether only one or both of these dihydroxyvitamin D3 metabolites is required for the generation of all the biological responses mediated by the parent vitamin D3. In contrast to the accumulated knowledge concerning the short term actions of 1,25(OH)2-D3 on stimulating intestinal calcium absorption and bone calcium reabsorption, relatively little is known of the biological function of 24,25(OH)2D3. We report now the results of a nine month study in which chicks were raised on a vitamin D-deficient diet from hatching to sexual maturity and received as their sole source of “vitamin D” either 24,25(OH)2D3 or 1,25(OH)2D3 singly or in combination. Specifically we are describing the integrated operation of the vitamin D endocrine system as quantitated by the individual measurement in all birds of 22 variables related to “vitamin D status” and as evaluated by the statistical procedure of multivariate discriminant analysis. Twelve of these variables involved detailed analysis of the bone including quantitative histology and the other 10 variables reflect various manifestations of vitamin D action, e.g. serum Ca2+ and Pi levels, vitamin D-dependent calcium binding protein (CaBP) in the intestine and kidney, egg productivity etc. As evaluated by the multivariate analysis, it is clear that 24,25(OH)2D3 and 1,25(OH)2D3 are simultaneously required for normalization of calcium homeostasis.  相似文献   

15.
A previous cDNA microarray analysis in murine MC3T3-E1 osteoblasts revealed a cluster of genes involved in cell cycle progression that was significantly down-regulated after a single treatment with 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] [L. Verlinden, G. Eelen, I. Beullens, M. Van Camp, P. Van Hummelen, K. Engelen, R. Van Hellemont, K. Marchal, B. De Moor, F. Foijer, H. Te Riele, M. Beullens, M. Bollen, C. Mathieu, R. Bouillon, A. Verstuyf, Characterization of the condensin component Cnap1 and protein kinase Melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3, J. Biol. Chem. 280 (45) (2005) 37319–37330]. Among those genes were the DNA replication and DNA damage checkpoint proteins, Chk1 and Claspin, of which the human homologues were recently shown to be E2F-responsive. Quantitative real-time PCR experiments in 1,25(OH)2D3-treated MC3T3-E1 cells confirmed the down-regulation observed in the microarray experiment. Moreover, Chk1 and Claspin promoter activities were also reduced after incubation with 1,25(OH)2D3, and this reduction was mediated through the E2F recognition motifs within their promoters because mutation of these motifs almost completely abolished the repressive effect of 1,25(OH)2D3. The antiproliferative effect of 1,25(OH)2D3 as well as its potential to down-regulate the expression of Chk1 and Claspin depended on the pocket proteins p107 and p130 because 1,25(OH)2D3 lost its antiproliferative action and failed to repress these E2F-target genes in p107−/−;p130−/−-cells, but not in pRb−/−-cells.  相似文献   

16.
1,25-(OH)2D3 (1,25) and 24,25-(OH)2D3 (24,25) mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms, which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two analogues of 1,25 that have been modified on the A-ring (2a, 2b) and are only 0.1% as effective in binding to the VDR as 1,25, to examine the role of the VDR in the response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25 and 24,25. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and second messenger activation (activity of protein kinase C) were measured after treatment with 10-8 M 1,25, 10-7 M 24,25, or the analogues at 10-9–10-6 M. Both analogues inhibited proliferation of both cell types, as did 1,25 and 24,25. Neither 2a nor 2b had an effect on proteoglycan production by GCs or RCs. 2a caused a dose-dependent stimulation of protein kinase C (PKC) that was not inhibited by cycloheximide or actinomycin D in either GC or RC cells. 2b, on the other hand, had no effect on PKC activity in RCs and only a slight stimulatory effect in GCs. Both cells produce matrix vesicles, extracellular organelles associated with the initial stages of calcification, in culture that are regulated by vitamin D metabolites. Since these organelles contain no DNA or RNA, they provide an excellent model for studying the mechanisms used by vitamin D metabolites to mediate their nongenomic effects. When matrix vesicles were isolated from naive cultures of growth zone cells and treated with 2a, a dose-dependent inhibition of PKC activity was observed that was similar to that found with 1,25-(OH)2D3. Plasma membranes contained increased PKC activity after treatment with 2a, but the magnitude of the effect was less than that seen with 1,25-(OH)2D3. Analogue 2b had no affect on PKC activity in either membrane fraction. When matrix vesicles from resting zone chondrocyte cultures were treated with 24,25-(OH)2D3, a significant decrease in PKC activity was observed. No change in enzyme activity was found for either 1,25-(OH)2D3 or the analogues. PKC activity in the plasma membrane fraction, however, was increased by 24,25-(OH)2D3 as well as by analogue 2a. This study shows that these analogues, with little or no binding to the vitamin D receptor, can affect cell proliferation and PKC activity, but not proteoglycan production. The direct membrane effect is analogue specific and cell maturation dependent. Further, by eliminating the VDR-mediated component of the cellular response, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Physiol. 171:357–367, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
We investigated the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression of scavenger receptors in human monocytic cell line (THP-1 cells) treated for 24 h with 12-O-tetradecanoylphorbol-13-acetate (TPA) which induces their differentiation into macrophages. The capacity to degrade 125I-labeled acetyl low density lipoprotein (LDL) was developed in accordance with macrophage differentiation. The treatment with 10 nM 1,25(OH)2D3 for 72 h inhibited the degradation of acetyl LDL by THP-1 macrophages in a dose-dependent manner, suggesting that 1,25(OH)2D3 inhibits scavenging function in macrophages. In order to clarify the mechanism of its inhibitory effect on degradation of acetyl LDL, we performed the ligand binding assay using 125I-labeled acetyl LDL. Scatchard analysis revealed that 1,25(OH)2D3 decreased the number of scavenger receptors without changing the affinity for acetyl LDL. We next examined the effect of 1,25(OH)2D3 on the expression of scavenger receptor mRNA. The mRNA of type I scavenger receptor was first detected in THP-1 cells 4 days after the treatment with TPA, the mRNA level increased up to 6 days, and then decreased. The treatment with 1,25(OH)2D3 for 72 h dramatically decreased the mRNA levels after the acquisition of macrophage phenotypes as evidenced by nonspecific esterase staining. However, 1,25(OH)2D3 did not affect the activity of non-specific esterase nor the induction of interleukin-1β mRNA by lipopolysaccharide in THP-1 macrophages. These findings suggest that 1,25(OH)2D3 exclusively decreases the expression of scavenger receptors in TPA-induced THP-1 macrophages without affecting the basic cellular functions as macrophages. © 1995 Wiley-Liss Inc.  相似文献   

18.
19.
Summary After injection of 3H 1,25(OH)2 vitamin D3 to rats fed a vitamin D-deficient diet, nuclear concentration and retention of radioactivity exists in reticular cells of the thymus medulla and cortex, as well as outer cells of developing Hassal's corpuscles. Lymphocytes do not show nuclear concentration of radioactivity. Nuclear concentration in reticular cells is prevented by prior injection of excess 1,25(OH)2 vitamin D3. The results indicate that reticular-endothelial cells contain nuclear receptors for 1,25(OH)2 vitamin D3 and suggest that effects of 1,25(OH)2 vitamin D3 on immune response and lymphocyte differentiation are indirect and mediated through genomic modulation of reticular cell functions such as messenger secretion.  相似文献   

20.
Guggulsterone (GS) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] have been shown to influence adipogenesis in 3T3-L1 cells. We investigated the ability of GS and 1,25(OH)2D3, alone and in combination to inhibit adipogenesis and induce apoptosis in 3T3-L1 adipocytes. Maturing preadipocytes were treated with 1,25(OH)2D3 in combination with GS for 6 days during differentiation. GS and 1,25(OH)2D3 each inhibited lipid accumulation, but the combination potentiated the inhibition of lipid accumulation. Apoptosis was increased by 1,25(OH)2D3 while GS had no effect, but GS + 1,25(OH)2D3 increased apoptosis more than either compound alone. Furthermore, GS + 1,25(OH)2D3 caused a potentiated decrease in the expression of aP2 and farnesoid X receptor expression more than either compound alone. In addition, 1,25(OH)2D3 increased vitamin D receptor expression after 6 days, while GS had no effect. GS + 1,25(OH)2D3, however, caused a potentiated increase in the expression of VDR. These findings show that GS potentiates 1,25(OH)2D3’s anti-adipogenic and pro-apoptotic effects in maturing 3T3-L1 preadipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号