首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of the heavy chain subunit of myosin has been studied in breast muscle myoblasts from embryos of the Japanese quail, Coturnix coturnix japonica, during differentiation of these cells in culture. Specifically, these experiments were done to examine the roles of myoblast fusion and the regulation of myoblast cell division in the control of myosin heavy chain synthesis.The rates of myosin heavy chain synthesis have been quantitated in cultures of fusing myoblasts by measurement of the incorporation of radioactive leucine and valine precursors into myosin heavy chain, and simultaneous determination of the intracellular specific activities of these radioactive amino acids. These measurements demonstrate that, prior to fusion, dividing myoblasts synthesize little, if any, myosin heavy chain, but that during the period of myoblast fusion, myosin heavy chain synthesis becomes activated at least 50 to 100-fold. Myosin heavy chain synthesis was also measured in mononucleated myoblasts inhibited from fusing by the presence of EGTA in the culture medium. These experiments demonstrate that myosin synthesis can be activated in mononucleated myoblasts to reach rates similar to those attained in fused myoblasts. This activation occurs under conditions in which EGTA-inhibited myoblasts were induced to withdraw from the cell division cycle by reducing the concentrations of the serum and embryo extract components of the culture medium or by prior “conditioning” of standard growth medium.These experiments, therefore, establish that the activation of myosin synthesis in breast muscle myoblasts does not require fusion, but indicate that activation is co-ordinated with the withdrawal of myoblasts from the cell division cycle.  相似文献   

2.
3.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

4.
During myogenesis, mononucleated myoblasts form multinucleated myotubes by membrane fusion. Efficiency of this intercellular process can be maximized by a simultaneous progress, with a time window, of other neighboring myoblasts in the differentiation program. This phenomenon has been described as the community effect. It proposes the existence of a molecule that acts as a differentiation-inducing signal to a group of identical cells. Here, we show that neuregulin is a strong candidate for this molecule in myoblast differentiation. The expression of neuregulin increased rapidly but transiently at early stage of differentiation of rat L6 cells. Neuregulin showed a potent differentiation-promoting activity in membrane fusion and expression of myosin heavy chain. The antibodies raised against neuregulin and its cognate receptor ErbB3, which were capable of neutralizing the signal pathway, inhibited myotube formation and expression of myosin heavy chain in both L6 cells and primary rat myoblasts. The progress of differentiation was mostly halted after the expression of myogenin and cell cycle arrest. These results suggest that the activation of an autocrine signaling of neuregulin may provide a basic mechanism for the community effect observed in the differentiation of the embryonic muscle cells.  相似文献   

5.
Leptin, a major regulator of body weight, was recently suggested to play a role in myoblasts. We conducted an experiment to determine whether leptin can influence the proliferation and differentiation of porcine skeletal myoblasts. Myoblasts occurred in non-leptin and leptin forms in various concentrations for various periods of cell states. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry assays demonstrated that leptin significantly promoted myoblast proliferation and increased cell accumulation in the S + G2/M phase, in a dose-dependent manner. Furthermore, in morphologic experiments, the formation of myotubes and the myogenic index was markedly reduced by leptin. In addition, biochemical analysis showed that leptin decreased creatine kinase (CK) activity and the amount of myogenin and myosin heavy chain (MyHC) protein. Taking all this together, our study indicated that exogenous leptin promoted proliferation but inhibited differentiation in porcine skeletal myoblasts, suggesting that leptin might be an important mediator in the regulation of the growth and development of muscle cells.  相似文献   

6.
The expression of RNA sequences coding for myofibrillar proteins has been followed during terminal differentiation in a mouse skeletal muscle cell line. Cloned complementary DNA probes hybridizing with the actins, skeletal muscle α-actin, myosin heavy chain and the myosin alkali light chains were employed in Northern blotting experiments with total cellular poly (A)-containing RNA extracted from the cultures at different times after plating. At the same times, parallel cultures were pulse-labelled with [35S]methionine and the pattern of newly synthesized proteins was analysed by two-dimensional gel electrophoresis. Synthesis of skeletal muscle α-actin and of the myosin alkali light chains (LClemb, LC1, LC3) was not detectable in dividing myoblast cultures. From the onset of cell fusion, the synthesis of myosin heavy chain, LClemb and α-actin increases with similar kinetics. Synthesis of LC3 (and trace amounts of LC1F) is detectable and subsequently increases at later stages of myotube formation. The corresponding messenger RNAs coding for myosin heavy chain and skeletal muscle α-actin are first detectable immediately before the initiation of myofibrillar protein synthesis. mRNAs coding for the non-muscle actins are accumulated in myoblasts and diminish after cell fusion. Comparisons between muscle mRNAs depend on the relative sensitivities of the different probes, reflecting mainly their homology with the isoform of the actin or myosin multigene family expressed. Quantitative analysis of Northern blots gives an estimated increase in skeletal muscle α-actin mRNA, with an homologous probe, of at least 130-fold with a minimum level of detection of 40 to 80 molecules per cell. Accumulation of this species and of the myosin heavy chain mRNA follows similar kinetics. mRNA coding for LC3, the principal myosin light chain detected with the probe, appears to accumulate to a lesser extent initially, paralleling synthesis of the corresponding protein. These results using cloned probes demonstrate a close temporal correlation between muscle mRNA accumulation and protein synthesis during terminal myogenesis in this muscle line.  相似文献   

7.
8.
9.
Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for ex-vivo expansion of these cells.  相似文献   

10.
Short-term analysis of myogenesis in respiration-deficient myoblasts demonstrated that respiratory chain dysfunction impairs muscle differentiation. To investigate long-term consequences of a deficiency in oxidative phosphorylation on myogenesis, we quantitated myoblast fusion and expression of sarcomeric myosin in respiration-deficient myogenic cybrids. We produced viable myoblasts harboring exclusively mtDNA with large-scale deletions by treating wild-type myoblasts with rhodamine 6G and fusing them with cytoplasts homoplasmic for two different mutated mtDNAs. Recovery of growth in transmitochondrial myoblasts demonstrated that respiratory chain function is not required for recovery of rhodamine 6G-treated cells. Both transmitochondrial respiration-deficient cultures exhibited impaired myoblast fusion. Expression of sarcomeric myosin was also delayed in deficient myoblasts. However, 4 weeks after induction of differentiation, one cell line was able to quantitatively recover its capacity to form postmitotic muscle cells. This indicates that while oxidative phosphorylation is an important source of ATP for muscle development, myoblast differentiation can be supported entirely by glycolysis.  相似文献   

11.
Protein synthesis and secretion in a myogenic cell line   总被引:11,自引:0,他引:11  
Myogenesis in a clonal myoblast cell line is accompanied by an increase in the specific activities of creatine phosphokinase and myokinase and in the rates of synthesis and accumulation of myosin heavy chain. Exponentially dividing myoblasts synthesize myosin heavy chain at a rate of about 1% of their rate of total protein synthesis; this rate increases 7-fold during the differentiation process. Both myoblasts and myotubes secrete a minimum of 12-soluble proteins. Although there is a quantitative change in the rates of appearance of five of these proteins during myogenesis, no qualitative changes in the profile of the secreted proteins are detected. Three of the secreted proteins share several properties of soluble collagen molecules. Basal laminae and polymerized collagen fibrils are associated with myotubes, but not with exponentially dividing myoblasts.  相似文献   

12.
In order to study to what extent and at which stage serum response factor (SRF) is indispensable for myogenesis, we stably transfected C2 myogenic cells with, successively, a glucocorticoid receptor expression vector and a construct allowing for the expression of an SRF antisense RNA under the direction of the mouse mammary tumor virus long terminal repeat. In the clones obtained, SRF synthesis is reversibly down-regulated by induction of SRF antisense RNA expression by dexamethasone, whose effect is antagonized by the anti-hormone RU486. Two kinds of proliferation and differentiation patterns have been obtained in the resulting clones. Some clones with a high level of constitutive SRF antisense RNA expression are unable to differentiate into myotubes; their growth can be blocked by further induction of SRF antisense RNA expression by dexamethasone. Other clones are able to differentiate and are able to synthesize SRF, MyoD, myogenin, and myosin heavy chain at confluency. When SRF antisense RNA expression is induced in proliferating myoblasts by dexamethasone treatment, cell growth is blocked and cyclin A concentration drops. When SRF antisense RNA synthesis is induced in arrested confluent myoblasts cultured in a differentiation medium, cell fusion is blocked and synthesis of not only SRF but also MyoD, myogenin, and myosin heavy chain is inhibited. Our results show, therefore, that SRF synthesis is indispensable for both myoblast proliferation and myogenic differentiation.  相似文献   

13.
Objectives: The aim of this study was to evaluate whether hypoxia and/or erythropoietin would be able to modulate proliferation/differentiation processes of rat and human myoblasts. Materials and methods: Rat L6 and primary human myoblasts were grown in 21% or 1% O2 in the presence or absence of recombinant human erythropoietin (RhEpo). Presence of erythropoietin receptors (EpoR) was assayed using RT‐PCR and Western blotting techniques. Cell proliferation was evaluated by determining the doubling time and kinetics of cultures by counting cells. Cell differentiation was analysed by determining myogenic fusion index using antibodies against the myosin heavy chain. Expression of myogenin and myosin heavy chain (MHC) proteins were evaluated using the Western blotting technique. Results: After 96 h culture in growth medium for 2.5 and 9 h, doubling time of L6 and human primary myoblasts respectively, had increased in 1% O2 conditions (P < 0.01). Kinetics of culture showed alteration in proliferation at 72 h in L6 myoblast cultures and at 4 days in human primary myoblasts. The myogenic fusion index had reduced by 30% in L6 myoblasts and by 20% in human myoblasts (P < 0.01). Expression of myogenin and MHC had reduced by around 50%. Despite presence of EpoR mRNA and protein, RhEpo did not counteract the effects of hypoxia either in L6 cells or in human myoblasts. Conclusions: The data show that exposure to hypoxic conditions (1% O2) of rat and human myoblasts altered their proliferation and differentiation processes. They also show that Epo is not an efficient growth factor to counteract this deleterious effect.  相似文献   

14.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

15.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in diverse biological processes including skeletal muscle development. MiR-214 is an miRNA that is differentially expressed in porcine embryonic muscle and adult skeletal muscle, suggesting that miR-214 may be related to embryonic myogenesis. In this study, the myoblast cell line C2C12 was used for functional analysis of miR-214 in vitro. The results showed that miR-214 was expressed both in myoblasts and in myotubes and was upregulated during differentiation. After treatment with an miR-214 inhibitor and culturing in differentiation medium, myoblast differentiation was repressed, as indicated by the significant downregulation of expression of the myogenic markers myogenin and myosin heavy chain (MyHC). Interestingly, myoblast proliferation was also repressed when cells were transfected with an miR-214 inhibitor and cultured in growth medium by real-time proliferation assay and cell cycle analysis. Our results showed that miR-214 regulates both proliferation and differentiation of myoblasts depending on the conditions.  相似文献   

16.
A role for acetylcholine receptors in the fusion of chick myoblasts   总被引:5,自引:3,他引:2       下载免费PDF全文
The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha-bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha-bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion-inducing agent that activates the nicotinic ACh receptor.  相似文献   

17.
Tumor necrosis factor inhibits human myogenesis in vitro.   总被引:15,自引:5,他引:10       下载免费PDF全文
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.  相似文献   

18.
We have previously shown that mitochondrial protein synthesis regulates myoblast differentiation, partly through the control of c-Myc expression, a cellular oncogene regulating myogenin expression and myoblast withdrawal from the cell cycle. In this study we provide evidence of the involvement of Calcineurin in this regulation. In C2C12 myoblasts, inhibition of mitochondrial protein synthesis by chloramphenicol decreases Calcineurin expression. Conversely, stimulation of this process by overexpressing the T3 mitochondrial receptor (p43) increases Calcineurin expression. Moreover, expression of a constitutively active Calcineurin (ΔCN) stimulates myoblast differentiation, whereas a Calcineurin antisense has the opposite effect. Lastly, ΔCN expression or stimulation of mitochondrial protein synthesis specifically increases slow myosin heavy chain expression. In conclusion, these data clearly suggest that, partly via Calcineurin expression, mitochondrial protein synthesis is involved in muscle development through the control of myoblast differentiation and probably the acquisition of the contractile and metabolic phenotype of muscle fibres.  相似文献   

19.
Stimulation and inhibition of myoblast differentiation by hormones   总被引:3,自引:0,他引:3  
The growth and differentiation of L6 myoblasts are subject to control by two proteins secreted by cells of the Buffalo rat liver line. The first of these, rat insulinlike growth factor-II (formerly designated multiplication stimulating activity) is a potent stimulator of myoblast proliferation and differentiation, as well as associated processes such as amino acid uptake and incorporation into protein, RNA synthesis, and thymidine incorporation into DNA. In addition, this hormone causes a significant decrease in the rate of protein degradation. All of these actions seem to be attributable to a single molecular species, although their time courses and sensitivity to the hormone differ substantially. The second protein, the differentiation inhibitor (DI), is a nonmitogenic inhibitor of all tested aspects of myoblast differentiation, including fusion and the elevation of creatine kinase. Indirect immunofluorescence experiments demonstrated that DI also blocks accumulation of myosin heavy chain and myomesin. Upon removal of DI after 72 h incubation, all of these effects were reversed and normal myotubes containing the usual complement of muscle-specific proteins were formed. Thus, this system makes it possible to achieve specific stimulation or inhibition of muscle cell differentiation by addition of purified proteins to cloned cells in serum-free medium.  相似文献   

20.
We investigated the effect of VD3 (1α,25-dihydroxyvitamin D3) on the proliferating, differentiating and differentiated phases of C2C12 myoblasts, a mouse skeletal muscle cell line. VD3 treatment in 10% FBS (fetal bovine serum) inhibited the proliferation and viability of the cells in a dose-dependent manner. It also dose-dependently increased the percentage of cells in the G0/G1 phase as shown by flow cytometry. In the differentiating phase, VD3 treatment inhibited the formation of myotubes and the expression of total myosin heavy chain at both the mRNA and protein levels. In the differentiated phase, treatment had no significant effect on the amount of total myosin heavy chain, as Western blot analysis with MF20 antibody [DSHB (Developmental Studies Hybridoma Bank)] showed. However, significantly greater expression of fast myosin heavy chain in 1 nM VD3 was found by Western blot analysis with MY-32 (Sigma). Thus VD3 inhibited the proliferation of myoblasts during proliferating and differentiating phases, whereas it increased the expression of the fast myosin heavy chain isoform in the differentiated phase. The data indicate that an adequate concentration of VD3 might have an anabolic effect on differentiated skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号