首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A genetically variable sensory mechanism provides phenotypic plasticity in the seasonal cycle of the Chrysoperla carnea species-complex of green lacewings. The mechanism functions as a switch during the pupal and early imaginal stages to determine aestival reproduction versus aestival dormancy, and it has two major components: (1) response to photoperiod and (2) response to a stimulus(i) associated with the prey of the larvae. Ultimately, the switch is based on the response to photoperiod—an all-or-nothing trait whose variation (long-day reproduction versus a short-day/long-day requirement for reproduction) is determined by alleles at two unlinked autosomal loci. In eastern North America, variation in this component of the switch differentiates two reproductively isolated “species” that are sympatric throughout the region: Chrysoperla carnea, in which both loci are homozygous for the dominant alleles that determine long-day, spring and summer reproduction and thus multivoltinism, and C. downesi, which has a very high incidence of the recessive alleles for the short-day/long-day requirement, and thus univoltine spring breeding. In contrast, geographical populations in western North America harbor variable amounts of within-and among-family genetic variation for the photoperiodic responses and also for the switch's second component—adult responsiveness to the prey of the larvae. The geographic pattern of genetic variation in the two components of the switch indicates that it is a highly integrated adaptation to environmental heterogeneity. Expression of among-family variation in the prey component of the switch is highly dependent on photoperiodic conditions and genotype (it requires a constant long daylength and the recessive short-day/long-day genotype). Thus, we infer that responsiveness to prey evolved as a modifier of the photoperiodic trait. The switch has a significant negative effect on a major determinant of fitness; it lengthens the preoviposition period in nondiapausing reproductives. This negative effect may result in temporal variation in the direction of selection, which helps maintain genetic variability in the switch mechanisms of western populations. Also, the photoperiodic and prey components of the switch are positively correlated with fecundity in nondiapausing reproductives; however, the strong influence of environmental factors—presence or absence of prey—leaves open the question whether the correlated effects on fecundity are expressed in nature.  相似文献   

2.
Photoperiodic time measurement regulating larval diapause in the pitcher-plant mosquito, Wyeomyia smithii, varies in a close relationship with latitude. The critical photoperiod mediating the maintenance and termination of diapause is positively correlated with latitude (r 2 = 0.977) among six populations from southern (30–31° N), intermediate (40° N), and northern (46–49° N) latitudes in North America. The developmental response to unnaturally short and to unnaturally long photoperiods declines with increasing latitude, so that longer critical photoperiods are associated with a downward rather than a lateral shift in the photoperiodic response curve. Exotic light and dark cycles of varying period (T) with a short (10 h) photophase and a scotophase ranging from 14 (T = 24) to 62 (T = 72) h, reveal two geographic patterns: a decline in perturbability of the photoperiodic clock with increasing latitude, and no change with latitude in the 21-h period of rising and falling development with increasing T. These results show (1) that there is a rhythmic component to photoperiodic time measurement in W. smithii, (2) that the period of this rhythm is about 21 h in all populations, and (3) that more northern populations show decreasing responsiveness to photoperiod and increasing stability against perturbation by exotic period lengths (T > 24). Previous studies on W.␣smithii indicate that this single temperate species of a tropical and subtropical genus has evolved from south to north. We therefore conclude that the evolution of increasing critical photoperiod in W. smithii during its adaptive radiation into North America has more likely involved the amplitude and not the period of the underlying circadian pacemaker. Received: 22 July 1996 / Accepted: 30 September 1996  相似文献   

3.
 Plastic responses to photoperiod of Iris pumila leaf phenological traits were investigated in two populations experiencing contrasting light conditions in the dune system at Deliblato Sands (44°48′ N, 38°58′ E; Serbia, Yugoslavia). The population “Dune” occupied an exposed area at the top and slope of a relatively large dune, and the population “Woods” was situated in the understory of a Pinus nigra stand. Plants developed from rhizome segments of 15 and 12 clonal genotypes sampled individually in an exposed and a shaded site, respectively, were grown under alternating daylength conditions (long day, 16 h; short day, 8 h) in an environmentally controlled growth room, and scored for a number of leaf traits (live and senescent leaf number per ramet, leaf longevity, and phyllochron). The photoperiodic treatments used significantly affected the phenotypic values of all traits analyzed, regardless of the population origin. Leaf longevity decreased, whereas the proportion of senescent to live leaves increased under short as compared to long photoperiod. The amount of plasticity to daylength appeared to be strongly trait specific: senescent leaf number was the most plastic, and live leaf number per ramet the least plastic trait, in both populations. The factorial ANOVAs did not reveal a significant population effect on any of the leaf traits observed, except the phyllochron, indicating the presence of genetic variation between populations only for that particular trait. A statistically significant interaction term obtained in each of the ANOVAs provides the evidence of the existence of genetic variation for plasticity in all the leaf phenological traits studied. Genetic correlations among all trait pairs were close to zero and mostly statistically nonsignificant, indicating that the analyzed I. pumila leaf phenological traits are not genetically constrained to evolve by natural selection toward their optimal reaction norms within each light habitat. Received: September 17, 2002 / Accepted: February 28, 2003  相似文献   

4.
The mosquito, Wyeomyia smithii, enters a larval dormancy or diapause that is initiated, maintained, and terminated by photoperiod. The median or critical photoperiod regulating diapause increases from 12 h of light per day along the Gulf of Mexico, USA (30° N), to over 15 h in southern Canada (49° N). Photoperiodic time measurement in W. smithii comprises both rhythmic and hourglass (interval timer) components. Using interrupted-night and resonance experiments, we show that both the rhythmic and hourglass components are prominent in the southern (ancestral) populations and that the influence of the rhythmic component declines with increasing latitude, while the hourglass component remains strong in northern (derived) populations. Previously, it has been shown that the genetic differences in critical photoperiod between northern populations and their southern ancestors involve not only the additive (independent) effects of genes, but also gene-gene interaction (epistasis). We therefore conclude that adaptive evolution of W. smithii has probably involved the progressive epistatic masking of the ancestral rhythmic component resulting in photoperiodic time measurement in northern populations accomplished principally through a day-interval timer. A comparison of W. smithii with previous studies indicates that the decline in critical photoperiod with increasing latitude represents an overall decrease in response to light rather than a shift in the timing of photosensitivity among arthropods in general. We propose that the underlying functional components of photoperiodic time measurement, as well as the overt photoperiodic response, are either homologous or are themselves responding directly to selection over latitudinal gradients in seasonality. Received: 18 May 1998 / Accepted: 14 September 1998  相似文献   

5.
Many aphid species have shown remarkable adaptability by invading new habitats and agricultural crops, although they are parthenogenetic and might be expected to show limited genetic variation. To determine if the mode of reproduction limits the level of genetic variation in adaptively important traits, we assess variation in 15 life history traits of the pea aphid, Acyrhosiphon pisum (Harris), for five populations sampled along a north-south transect in central North America, and for three traits for three populations from eastern Australia. The traits are developmental times and rates as affected by temperature, body weights as affected by temperature, fecundity, measures of migratory tendency, and photoperiodic responses. The most southerly population from North America is shown to be obligately parthenogenetic, as are the Australian populations, and the four more northerly North American populations are facultatively parthenogenetic with the number of parthenogenetic generations per year increasing from north to south. The broad-sense heritabilities of life history traits varied from 0.36 to 0.71 for nine quantitive traits based on a comparison of within-and between-lineage variances. Using these traits, 7–13 distinct genotypes (i.e. clones) were identified among each of the 18 lines sampled from the North American populations, but the number did not differ significantly among populations. The level of genetic variation differed from trait to trait. For 4 of 12 quantitative traits, the level of variation in the obligately parthenogenetic population from North America was lowest, but significantly lower than all the sexual populations for only 1 trait. The obligately parthenogenetic population had the highest level of genetic variation for two traits, and had intermediate levels for the others. The most northerly population, which was sexual and had relatively few parthenogenetic generations each year, had the lowest level of variation for 5 of 12 traits and the highest level of variation for 2 traits. There was no decline in variability from north to south correlated with the increase in the annual number of parthenogenetic generations. The Australian populations showed no less variation than the North American populations for two of three traits, although the pea aphid was introduced to Australia only 5 years prior to the study, whereas the aphid has been in North America for at least 100 years. The mode of reproduction has not had a substantial impact on the level of genetic variation in life history traits of the pea aphid, but there are population-specific factors that effect the level of variation in certain traits.  相似文献   

6.
We determined allozyme variability of 34 populations of the pitcher-plant mosquito, Wyeomyia smithii, from Florida (30°N) to northern Manitoba (54°N) and compared allozyme variability with the additive genetic variance for preadult development time and photoperiodic response determined previously for six populations over a similar range (30–50°N). Phylogenetic analysis of allozymes shows a well-defined split between Gulf Coast and lowland North Carolina populations, similar to previously observed phylogeographic patterns in a wide variety of taxa. A deeper split in the phylogeny of W. smithii coincides with the location of the maximum extent of the Laurentide Ice Sheet. Furthermore, both average heterozygosity and patterns of isolation-by-distance decline in populations north of the former glacial border. It is likely that northern populations are the result of a range expansion that occurred subsequent to the late-Wisconsin retreat of the Laurentide Ice Sheet and that these populations have not yet reached a drift-migration equilibrium. The northern decline in allozyme heterozygosity contrasts sharply with the northern increase in additive genetic variance of development time and photoperiodic response found in previous studies. These previous studies also showed that the genetic divergence of populations has involved stochastic variation in the contribution of dominance and epistasis to the genetic architecture underlying demographic traits, including preadult development time, and photoperiodic response. When taken together, the present and prior studies identify the genetic processes underlying the lack of concordance between geographic patterns of allozyme and quantitative genetic variation in natural populations of W. smithii. In the presence of nonadditive genetic variation, isolation and drift can result in opposite patterns of genetic variation for structural genes and quantitative traits.  相似文献   

7.
Living in seasonally changing environments requires adaptation to seasonal cycles. Many insects use the change in day length as a reliable cue for upcoming winter and respond to shortened photoperiod through diapause. In this study, we report the clinal variation in photoperiodic diapause induction in populations of the parasitoid wasp Nasonia vitripennis collected along a latitudinal gradient in Europe. In this species, diapause occurs in the larval stage and is maternally induced. Adult Nasonia females were exposed to different photoperiodic cycles and lifetime production of diapausing offspring was scored. Females switched to the production of diapausing offspring after exposure to a threshold number of photoperiodic cycles. A latitudinal cline was found in the proportion of diapausing offspring, the switch point for diapause induction measured as the maternal age at which the female starts to produce diapausing larvae, and the critical photoperiod for diapause induction. Populations at northern latitudes show an earlier switch point, higher proportions of diapausing individuals and longer critical photoperiods. Since the photoperiodic response was measured under the same laboratory conditions, the observed differences between populations most likely reflect genetic differences in sensitivity to photoperiodic cues, resulting from local adaptation to environmental cycles. The observed variability in diapause response combined with the availability of genomic tools for N. vitripennis represent a good opportunity to further investigate the genetic basis of this adaptive trait.  相似文献   

8.
Photoperiod is a reliable indicator of season and an important cue that many insects use for phenological synchronization. Undergoing range expansion insects can face a change in the local photoperiod to which they need to resynchronize. Rapid range expansion can be associated with rapid photoperiodic adaptation, which can be associated with intense selection on strongly heritable polygenic traits. Alternatively, it is proposed that, in insects with an XO sex‐determination system, genes with large effect residing on the sex chromosome could drive photoperiodic adaptation because the gene or genes are exposed to selection in the sex carrying only a single X‐chromosome. The present study seeks to understand which of these alternatives more likely explains the rapid photoperiodic adaptation in European Colorado potato beetles Leptinotarsa decemlineata Say. Diapause induction is assessed in beetles from a northern and a southern population, as well as from reciprocal hybrid crosses between the northern and southern population, when reared at an intermediate length photoperiod. The crosses within population display the expected responses, with the northern and southern populations showing high and low diapause propensity, respectively. The hybrids show intermediate responses in all studied traits. No clear difference in the responses in hybrids depending on the latitudinal origin of their father or mother is detected, even though partial paternal line dominance is seen in the responses of male beetles in one hybrid cross. These results therefore indicate that, in L. decemlineata, photoperiodic diapause induction is strongly heritable, and has an additive polygenic autosomal background.  相似文献   

9.
Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate‐driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (QST > FST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate cue for fall growth cessation. Genotypes moved too far southward suffer from early growth cessation, whereas those moved too far northward are prone to fall frost and winter dieback. In the face of current and forecasted climate change, habitat restoration, forestry, and tree breeding efforts should utilize these findings to better match latitudinal and climatic source environments with management locations for optimal future outcomes.  相似文献   

10.
11.
Behavioural differences between individuals are often found to be consistent across contexts and/or over time, although recent studies suggest that ontogenetic processes and learning might influence personality. During ontogeny, environmental influences may play an important role in shaping an individual's personality as well as its physiology. Seasonal changes are ubiquitous and known to influence development. To study developmental plasticity, of behaviour and physiology in the wild cavy (Cavia aperea), we manipulated the photoperiod in a fully crossed match–mismatch design by simulating spring and autumn photoperiod until weaning and subsequently moving half of the animals into the mismatching photoperiod. We found developmental plasticity in behavioural and physiological traits before and after sexual maturation for growth, resting metabolic rate and fearlessness. For fearlessness, changes in response to the opposite photoperiod were more pronounced in males than in females. Exploration and boldness were only influenced by early, but not by late photoperiod. No sex differences were found for these two traits. Even though our treatment changed average trait expression, some behavioural traits proved consistent over time, but physiological traits were not. Fearlessness was consistent only in animals that did not change photoperiod during development, whereas exploration and boldness were consistent over time regardless of photoperiodic treatment. Our study shows that in response to a change in photoperiod personality traits differ substantially in developmental plasticity.  相似文献   

12.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

13.
Photoperiod may regulate seasonal reproduction either by providing the primary driving force for the reproductive transitions or by synchronizing an endogenous reproductive rhythm. This study evaluated whether breed differences in timing of the reproductive seasons of Finnish Landrace (Finn) and Galway ewes are due to differences in photoperiodic drive of the reproductive transitions or to differences in photoperiodic synchronization of the endogenous rhythm of reproductive activity. The importance of decreasing photoperiod after the summer solstice in determining the onset and duration of the breeding season was tested by housing ewes from the summer solstice in either a simulated natural photoperiod or a fixed summer-solstice photoperiod (18 h light:6 h dark; summer-solstice hold). Onset of the breeding season within each breed did not differ between these photoperiodic treatments, but Galway ewes began and ended their breeding season earlier than Finn ewes. The duration of the breeding season was shorter in Galway ewes on summer-solstice hold than on simulated natural photoperiod; duration did not differ between photoperiodic treatments in Finn ewes. The requirement for increasing photoperiod after the winter solstice for initiation of anoestrus was tested by exposing ewes from the winter solstice to either a simulated natural photoperiod or a winter-solstice hold photoperiod (8.5 h light:15.5 h dark). Onset of anoestrus within each breed did not differ between these photoperiodic treatments, but the time of this transition differed between breeds. These observations suggest that genetic differences in timing of the breeding season in Galway and Finn ewes do not reflect differences in the extent to which photoperiod drives the reproductive transitions, because neither breed requires shortening days to enter the breeding season or lengthening days to end it at appropriate times. These findings are consistent with the hypothesis that photoperiod synchronizes an endogenous rhythm of reproductive activity in both breeds and that genetic differences in timing of the breeding season reflect differences in photoperiodic synchronization of this rhythm.  相似文献   

14.
Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT''s canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT''s effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic canalization, genetic constraint, and GxE may have related genetic mechanisms resulting from interactions among major QTL, genomic backgrounds, and environments.  相似文献   

15.
C E Edwards  C Weinig 《Heredity》2011,106(4):661-677
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.  相似文献   

16.
Aim We intend to characterize and understand the spatial and temporal patterns of vegetation phenology shifts in North America during the period 1982–2006. Location North America. Methods A piecewise logistic model is used to extract phenological metrics from a time‐series data set of the normalized difference vegetation index (NDVI). An extensive comparison between satellite‐derived phenological metrics and ground‐based phenology observations for 14,179 records of 73 plant species at 802 sites across North America is made to evaluate the information about phenology shifts obtained in this study. Results The spatial pattern of vegetation phenology shows a strong dependence on latitude but a substantial variation along the longitudinal gradient. A delayed dormancy onset date (0.551 days year?1, P= 0.013) and an extended growing season length (0.683 days year?1, P= 0.011) are found over the mid and high latitudes in North America during 1982–2006, while no significant trends in greenup onset are observed. The delayed dormancy onset date and extended growing season length are mainly found in the shrubland biome. An extensive validation indicates a strong robustness of the satellite‐derived phenology information. Main conclusions It is the delayed dormancy onset date, rather than an advanced greenup onset date, that has contributed to the prolonged length of the growing season over the mid and high latitudes in North America during recent decades. Shrublands contribute the most to the delayed dormancy onset date and the extended growing season length. This shift of vegetation phenology implies that vegetation activity in North America has been altered by climatic change, which may further affect ecosystem structure and function in the continent.  相似文献   

17.
Organisms living in seasonal environments are often limited by the time available to complete their development. Especially individuals in northern populations may face severe time constraints in their need of completing development before the end of the growth season. Larval amphibians have been widely used in studies of phenotypic plasticity. However, their responses to changes in photoperiod, the main seasonal cue in many organisms, are unknown. In a laboratory experiment, we studied whether common frog (Rana temporaria) tadpoles originating from two populations (separated latitudinally by 1600 km) adjust their growth and development according to the progress of the season by using photoperiodic cues, and whether these responses are temperature dependent. We hypothesised that if frogs use photoperiod as a cue, they should increase growth and development rates as a response to photoperiodic treatments mimicking progressing season. Although our predictions were not verified in either of the populations, photoperiod manipulations had effects on larval life history in both populations. When exposed to progressing season treatments and high temperature, tadpoles from the southern population ceased feeding, which led to delayed metamorphosis and increased mortality. In the northern population, age at metamorphosis was unaffected by the photoperiod treatments, but growth rate until metamorphosis and metamorphic size were slightly larger in the treatments with shorter (increasing or decreasing) day length. Irrespective of photoperiod treatments, growth and development rates, size at metamorphosis and food consumption were higher in the northern as compared to the southern population. These results indicate that in contrast to several insect species, the critical life history decisions in amphibian larvae may not be strongly influenced by photoperiodic cues, but different populations seem to differ in this respect. However, the strong temperature×photoperiod interactions in several traits in the southern population suggest that the role of photoperiodic cues may be affected by other environmental factors, although the ecological significance of these differences remains unclear.  相似文献   

18.
Whether alien insects that are introduced into temperate regions adapt to seasonally changing environmental conditions is an important question in evolutionary biology. If rapid evolution has occurred in a non‐native environment, a latitudinal cline in critical photoperiod for diapause induction (i.e., the photoperiod at which half of the individuals enter diapause) and in life cycle synchronization with host plant phenology should be evident among locations. The alien bruchid Acanthoscelides pallidipennis (Motschulsky) (Coleoptera: Bruchidae) is native to North America and introduced into Japan with the host plant Amorpha fruticosa L. (Fabaceae) in the late 1940s. To examine whether seasonal adaptation has occurred in A. pallidipennis, we conducted a laboratory experiment and phenological observations using three latitudinally different populations. We bred F1 eggs at 22 °C and five photoperiodic regimens – L:D = 10:14, 13:11, 14:10, 15:9, or 16:8 hours – and examined whether diapause was induced. The estimated critical photoperiod for diapause induction was longest in the most northern population and shortest in the most southern population. Life cycle was found to be synchronized with host phenology in each location. Also voltinism varied geographically, from univoltine in the northern population to bivoltine in the southern populations. These results showed that A. pallidipennis rapidly adapted to seasonal environmental conditions in Japan after its introduction.  相似文献   

19.
Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch‐induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway‐specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi.  相似文献   

20.
The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), invaded Japan from North America about 60 years ago. Immediately after its invasion – and for the first three decades – its life cycle was bivoltine, two generations per year throughout its entire distribution in Japan. Thereafter, its life cycle shifted to trivoltine in the southwestern areas of Japan. In the present study we examined the life-history traits proposed to be implicated in this event with the aim of clarifying the mechanism of this life-cycle shift. The critical photoperiod for diapause induction, as defined by the photoperiod at which 50% of individuals enter diapause, was shorter in the trivoltine populations than in their bivoltine counterparts. The temperature sensitivity of the photoperiodic response, as defined by the difference in the critical photoperiod between 20 and 25°C, was greater in the trivoltine populations than in the bivoltine ones. The geographic variation in larval and pupal periods was positively correlated to the latitude of the original localities of the populations. The change in the number of larval instars would be one of the main factors accounting for the regional differences in the developmental period. These results suggest that some life-history traits of H. cunea have changed following its invasion of Japan as an adaptive response to local climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号