首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methylation status of carrot (Daucus carota L.) mitochondrial DNA (mtDNA) was studied using isoschizomeric restriction enzymes MspI/HpaII (CCGG) and MvaI/EcoRII [CC(A/T)GG]. Southern hybridisations with probes for mitochondrial genes coxII and atpA were performed. MtDNAs isolated from non-embryogenic cell suspensions and roots were analysed. No differences were found using MspI/HpaII but after digesting the mtDNA with MvaI and EcoRII, some qualitative and quantitative differences between the restriction patterns appeared. Distinction was also revealed after Southern hybridisation with the coxII probe. These data indicate that the mtDNA of carrot is methylated in CNG trinucleotides and unmethylated in CG dinucleotides in CCGG sequences. The results were reproducible for cell suspensions of various genotypes and even cultivars but the extent of methylation was different in the root. The possible role of methylation in the mitochondrial genome of higher plants is discussed. Received: 16 April 1997 / Revision received: 4 July 1997 / Accepted: 30 July 1997  相似文献   

2.
Salinity is an important limiting environmental factor for rapeseed production worldwide. In this study, we assessed the extent and pattern of DNA damages caused by salt stress in rapeseed plants. Amplified fragment length polymorphism (AFLP) analysis revealed dose-related increases in sequence alterations in plantlets exposed to 10-1000 mmol/L sodium chloride. In addition, individual plantlets exposed to the same salt concentration showed different AFLP and selected region amplified polymorphism banding patterns. These observations suggested that DNA mutation in response to salt stress was random in the genome and the effect was dose-dependant. DNA methylation changes in response to salt stress were also evaluated by methylation sensitive amplified polymorphism (MSAP). Three types of MSAP bands were recovered. Type Ⅰ bands were observed with both isoschizomers Hpa Ⅱ and Msp Ⅰ, while type Ⅱ and type Ⅲ bands were observed only with Hpa Ⅱ and Msp Ⅰ, respectively. Extensive changes in types of MSAP bands after NaCI treatments were observed, including appearance and disappearance of type Ⅰ, Ⅱ and Ⅲ bands, as well as exchanges between either type Ⅰand type Ⅱ or type Ⅰ and type Ⅲ bands. An increase of 0.2-17.6% cytosine methylated CCGG sites were detected in plantlets exposed to 10- 200 mmol/L salt compared to the control, and these changes included both de novo methylation and demethylation events. Nine methylation related fragments were also recovered and sequenced, and one sharing a high sequence homology with the ethylene responsive element binding factor was identified. These results demonstrated clear DNA genetic and epigenetic alterations in planUets as a response to salt stress, and these changes may suggest a mechanism for plants adaptation under salt stress.  相似文献   

3.
Cytosine methylation changes (hyper- or hypomethylation) in centromeric and telomeric sequences were observed in all three studied rice introgression lines containing DNA from wild rice, Zizania latifolia Griseb. The changed genomic Southern hybridization patterns were complex and non-concordant between a pair of isoschizomers (HpaII/MspI) digests, indicating methylation modifications at both the inner and outer cytosines of the CCGG sites. The changed patterns were inherited through generations. Possible mechanism for the methylation changes and their potential implications for the phenotypic variation and genome organization are discussed.  相似文献   

4.
Variation of cytosine methylation in 57 sweet orange cultivars   总被引:1,自引:0,他引:1  
Sweet orange is an important group of citrus cultivars, which includes a number of bud sport cultivars. Little is known about the CpG methylation status of the CCGG sequences in the orange genome. In this study, methylation-sensitive amplification polymorphism (MSAP), based on the application of isoschizomers (Hpa II and Msp I), was first used to analyze cytosine methylation patterns in 57 orange cultivars that were not fully differentiated by regular DNA molecular markers. Three types of bands were generated from ten primer pairs. Type I bands were present following restriction with Eco RI + Hpa II and Eco RI + Msp I; type II or type III were present only following restriction with either Eco RI + Hpa II or with Eco RI + Msp I. The total number of these three types of bands was 802, 72, and 157, respectively. Among these, the number of polymorphic bands were 244 (30.2%), 23 (31.9%), and 32 (20.4%), in type I, II and III, respectively. The methylation patterns of these 57 cultivars are discussed and assessed by dendrograms derived from the analysis of polymorphic MSAP bands. The distribution of polymorphic bands of the above three types demonstrate the methylation patterns and frequency at the cytosine loci. We suggest that methylation events could be more frequent than demethylation events, and that the methylation patterns maybe associated with phenotypic traits.  相似文献   

5.
AFLP-Based detection of DNA methylation   总被引:14,自引:0,他引:14  
By using the isoschizomersHpa II andMsp I which display differential sensitivity to cytosine methylation, a modified amplified fragment length polymorphism (AFLP) technique has been developed to investigate DNA methylation profiles in eukaryotic organims. Genomic DNA was digested with a mixture ofEcoR I and one of the isoschizomers, and ligated to oligonucleotide adapters. After two rounds of selective PCR amplification, followed by DNA separation on a Long Ranger gel electrophoresis, a subset of restriction fragments can be displayed on an X-ray film. Comparison of AFLP banding patterns betweenHpa II andMsp I revealed the extent of DNA methylation. The technique has been successfully applied in this study to investigate DNA methylation profiles of apple (Malus domestica cv. Gala) genomic DNA extracted from leaves of field-grown adult trees andin vitro-grown shoot cultures. The results showed that up to 25 percent of AFLP bands were derived from methylated sequences, and among those, a few bands unique to either adult trees orin vitro shoots were observed. These results demonstrated that this protocol is effective in identifying methylated DNA profiles. Both first authors have contributed equally to this work.  相似文献   

6.
We have examined transgene methylation in the DNA from the livers of a pedigree of mice carrying three copies of an integrated MToGH1 transgene. Utilizing the methylation-sensitive isoschizomersMsp I andHpa II, Southern blot analysis revealed that all second generation animals derived from a transgenic female had hypermethylated DNA, whereas first generation animals sired by a transgenic male displayed a range of methylation phenotypes ranging from no methylation to hypermethylation of the transgene sequences. Of the mice that exhibited hypermethylation of the transgene in CpG dinucleotides (CmCGG), a minority of these animals also exhibited apparent CpC methylation (i.e. inhibition ofMsp I cutting, presumably blocked by methylation of the outer C of CCGG). Methylation was also examined in the inner C of CC(A/T)GG sequences in the MToGH1 transgene using the isoschizomer pairBstN I andEcoR II. A minority of MToGH1 animals in the F1 generation showed clear evidence of methylation in these sites as well as in the inner and outer Cs of CCGG sites. An examination of MToGH1 expression in terms of oGH levels in serum revealed that there was a high degree of variation in the levels of circulating oGH between animals of this pedigree. There was a weak inverse relationship between the serum level of oGH and the extent of methylation of the transgene. In particular, mice exhibiting CpC together with CpG methylation were found to have very low levels of circulating oGH. Our results highlight the nature and complexity of epigenetic factors associated with transgene sequences which may ultimately influence expression of introduced genes in the mammalian genome.  相似文献   

7.
In the chicken genome there are middle repetitive DNA sequences with a clustered organization. Each cluster is composed of members of different families of repeated DNA sequences and usually contains only one member of each family. Many clusters have the same assortment of repeated sequences but they are in scrambled order from cluster to cluster. These clusters usually exceed 20 × 103 bases in length and comprise at least 10% of the repeated DNA of the chicken. The repeated sequences that are cluster components are extensively methylated. Methylation was detected by comparing HpaII and MspI digests of total DNA, where the occurrence of the sequence C-m5C-G-G is indicated when HpaII (cleaves C-C-G-G) fragments are larger than those generated by MspI (cleaves C-m5C-G-G or C-C-G-G). In hybridization experiments with Southern (1975) blots of total DNA digested with either HpaII or MspI, the cloned probes representing clustered repeated sequences showed a dramatic difference in the lengths of restriction fragments detected in the two digests. Many of the sequences that comprise these clusters are methylated in most of their genomic occurrences. There are patterns of methylation that are reproduced faithfully from copy to copy. The overall distribution of methylation within clusters seems to be regional, with long methylated DNA segments interrupted by specific undermethylated regions.  相似文献   

8.
We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.  相似文献   

9.
Guo WL  Wu R  Zhang YF  Liu XM  Wang HY  Gong L  Zhang ZH  Liu B 《Plant cell reports》2007,26(8):1297-1307
We have reported recently that tissue culture induced a high level of genetic variation at the primary nucleotide sequence in regenerants of medicinal plant Codonopsis lanceolata. It is not known, however, whether epigenetic variation in the form of alteration in DNA methylation also occurred in these plants. Here, we investigated possible alterations in level and pattern of cytosine methylation at the CCGG sites in the same set of regenerants relative to the donor plant, by the MSAP method employing a pair of isoschizomers, HpaII and MspI, which recognize the same restriction site but are differentially sensitive to cytosine methylation at the CCGG sites. A total of 1,674 MSAP profiles were resolved using 39 primer combinations. Of these, 177 (10.5%) profiles were polymorphic among the regenerants and/or between the regenerant(s) and the donor plant, in EcoRI + HpaII or EcoRI + MspI digest but not in both, indicating alteration in cytosine methylation patterns of specific loci, though their estimated total level of methylation remained more or less the same as the donor plant. Gel blot analysis validated most of the variant MSAP profiles as bona fide alteration in methylation patterns. Correlation analysis between the MSAP data and the previously reported ISSR and RAPD data revealed significant correlations, suggesting their possible intrinsic interrelatedness. Thirty-seven typical variant MSAP profiles were isolated and sequenced, of which 5 showed significant homology to known-function genes, 2 to chloroplast sequences, whilst the rest 30 did not find a match in the database. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. L. Guo and R. Wu contributed equally to this work.  相似文献   

10.
We have reported previously that introgression by Zizania latifolia resulted in extensive DNA methylation changes in the recipient rice genome, as detected by a set of pre-selected DNA segments. In this study, using the methylation-sensitive amplified polymorphism (MSAP) method, we globally assessed the extent and pattern of cytosine methylation alterations in three typical introgression lines relative to their rice parent at ∼2,700 unbiased genomic loci each representing a recognition site cleaved by one or both of the isoschizomers, HpaII/MspI. Based on differential digestion by the isoschizomers, it is estimated that 15.9% of CCGG sites are either fully methylated at the internal Cs and/or hemi-methylated at the external Cs in the rice parental cultivar Matsumae. In comparison, a statistically significant increase in the overall level of both methylation types was detected in all three studied introgression lines (19.2, 18.6, 19.6%, respectively). Based on comparisons of MSAP profiles between the isoschizomers within the rice parent and between parent and the introgression lines, four major groups of MSAP banding patterns are recognized, which can be further divided into various subgroups as a result of inheritance of, or variation in, parental methylation patterns. The altered methylation patterns include hyper- and hypomethylation changes, as well as inter-conversion of hemi- to full-methylation, or vice versa, at the relevant CCGG site(s). Most alterations revealed by MSAP in low-copy loci can be validated by DNA gel blot analysis. The changed methylation patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. Sequencing on 31 isolated fragments that showed different changing patterns in the introgression line(s) allowed their mapping onto variable regions on one or more of the 12 rice chromosomes. These segments include protein-coding genes, transposon/retrotransposons and sequences with no homology. Possible causes for the introgression-induced methylation changes and their implications for genome evolution and crop breeding are discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Z. Y. Dong and Y. M. Wang have equally contributed to the work.  相似文献   

11.
For a better understanding of epigenetic regulation of cell differentiation, it is important to analyze DNA methylation at a specific site. Although previous studies described methylation of isolated DNA extracted from cells and tissues using a combination of appropriate restriction endonucleases, no application to tissue cell level has been reported. Here, we report a new method, named histo endonuclease-linked detection of methylation sites of DNA (HELMET), designed to detect methylation sites of DNA with a specific sequences in a tissue section. In this study, we examined changes in the methylation level of CCGG sites during spermatogenesis in paraffin-embedded sections of mouse testis. In principle, the 3′-OH ends of DNA strand breaks in a section were firstly labeled with a mixture of dideoxynucleotides by terminal deoxynucleotidyl transferase (TdT), not to be further elongated by TdT. Then the section was digested with Hpa II, resulting in cutting the center portion of non-methylated CCGG. The cutting sites were labeled with biotin-16-dUTP by TdT. Next, the section was treated with Msp I, which can cut the CCGG sequence irrespective of the presence or absence of methylation of the second cytosine, and the cutting sites were labeled with digoxigenin-11-dUTP by TdT. Finally, both biotin and digoxigenin were visualized by enzyme- or fluorescence-immunohistochemistry. Using this method, we found hypermethylation of CCGG sites in most of the germ cells although non-methylated CCGG were colocalized in elongated spermatids. Interestingly, some TUNEL-positive germ cells, which are frequent in mammalian spermatogenesis, became markedly Hpa II-reactive, indicating that the CCGG sites may be demethylated during apoptosis. An erratum to this article can be found at  相似文献   

12.
 Plants have to cope with a number of envi-ronmental stresses which may potentially induce genetic and epigenetic changes and thus contribute to genome variability. In the present study we inspected the DNA methylation status of two heterochromatic loci (defined with repetitive DNA sequences HRS60 and GRS) in a tobacco cell culture exposed to osmotic stress. Investigations were performed on a TBY-2 cell suspension culture, and the stress was elicited with NaCl or D-mannitol. Using the restriction enzymes MspI/HpaII and MboI/Sau3AI in combination with Southern hydridization we observed a reversible hypermethylation of the external cytosine at the CpCpG trinucleotides in cells grown under mild osmotic stress equal to a NaCl concentration of 10 g/l. There were no changes in the methylation of the internal cytosine as the CpG dinucleotides within the CCGG motifs (HpaII sites) appeared to be fully methylated in tobacco DNA repetitive sequences under normal physiological conditions. The data suggest epigenetic changes in the plant genome based on de novo methylation of DNA in response to environmental stress. Received: 26 November 1996/Accepted: 20 December 1996  相似文献   

13.
The in-gel competitive reassociation (IGCR) procedure was successfullyapplied to construct a comprehensive library enriched in DNAfragments containing C5mCGG sequences from mouse liver and braingenomic DNA. For IGCR, methylation-insensitive restriction enzyme(Msp I) digests were used as target DNA and methylation-sensitiverestriction enzyme (Hpa II) digests as competitor DNA. Southernblot analysis indicated that 60 to 70% of the clones in thelibrary were derived from the methylated sites and overall enrichmentwas 200- to 1000-fold. IGCR was further applied to constructa library for the sites differentially methylated between brainand liver DNA. In the library, approximately 20% of the HpaII sites exhibited different degrees of methylation betweenthese tissues.  相似文献   

14.
The restriction endonucleases Hpa II and Msp I were used to examine cytosine methylation in the ribosomal RNA genes (rDNA) of inbred lines of maize and species of teosinte. In all of the rDNAs examined, Msp I (not sensitive to mCpG) digestion yielded a distribution of lower molecular weight fragments indicative of multiple recognition sites. The majority of the rDNA arrays in an individual were inaccessible to Hpa II (sensitive to mCpG) cleavage, but a significant fraction (10–25%) was cleaved at least once by Hpa II into repeat unit length fragments (9.1 kbp). In some maize inbred lines, one or two additional fragment populations (less than 9.1 kbp in length) were also produced by Hpa II digestion. All of the unmethylated Hpa II sites mapped to the intergenic spacer (IGS), and the major unmethylated site was located approximately 800 bp 5 to the start of the 18S RNA coding sequence. An Eco RI polymorphism, present in the 26S gene of certain inbred lines and hybrids, was utilized to investigate the organization of unmethylated repeat units in the rDNA array. In double digest experiments with Hpa II/Eco RI, the fragments from repeat units with two Eco RI sites were sensitive to Hpa II digestion, whereas, the fragments from repeat units with a single Eco RI site were almost completely resistant to Hpa II digestion. Similar digestion patterns were also observed in Eco RII (sensitive to mCNG)/Eco RI digests. These results suggest that unmethylated and Eco RI polymorphic sites occur in the same repeat units.  相似文献   

15.
In the rat, differentiation and cell proliferation both affect DNA methylation. We studied 5-methylcytosine at the inner cytosine of the sequence C-C-G-G, a common methylation site, using endonuclease MspI (which cleaves C-C-G-G- and C-mC-G-G), and its isoschizomer HpaII (which cleaves only C-C-G-G). DNA from all tissues and cell lines studied was methylated at C-C-G-G, at levels ranging from 45 to 80%, but the methylation sites were not distributed uniformly. Our analysis suggests a model in which cells contain variable amounts of three DNA methylation states, averaging 30–40, 70–80 and 95–100% methylation, respectively. One biological parameter that alters methylation is the prolferative state of the cell. We observed that NRK, a non-transformed cell line, increased its DNA methylation from 45 to 67% when monolayer cultures became confluent and non-dividing. We also observed that a class of repetitive DNA was completely methylated in DNA from all sources except a transformed cell line.  相似文献   

16.
The tomato nuclear genome was determined to have a G+C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G+C content even lower (32% average) whereas coding regions are considerably richer in G+C (46%).5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development.Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI)are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco.The low G+C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mCT. This is supported by the fact that G+C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions.Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.  相似文献   

17.
18.
We developed a simple and reliable genetic method to determine sex in bats from the Vespertilionidae and Molossidae families. Polymerase chain reaction was used to amplify a portion of the introns within the zinc‐finger‐X (Zfx) and zinc‐finger‐Y (Zfy) genes. We designed primers to produce size variation between the Zfx and Zfy products that could be visualized using gel electrophoresis. Using an example from our wind‐wildlife research, we show how sex data generated using this method are superior to sex data based on external morphology. Our method allows for the generation of sex data across a wide range of bats that can be used to address key questions in wildlife forensics, behavioural ecology, conservation and evolutionary biology.  相似文献   

19.
Mandrioli M  Volpi N 《Genetica》2003,119(2):187-191
Mamestra brassicae genomic DNAs, isolated from larvae and adult tissues and from in vitro cultured CRL-8003 cells, were enzymatically hydrolysed to nucleosides that were separated by HPLC. HPLC analysis showed that 5mC content in cabbage moth larvae, adults and cultured cells was 8.9±0.5, 9.3%±0.2 and 10.2%±0.4 respectively. Cabbage moth 5mC content results the highest reported till now in insects and it is similar to the typical vertebrate one. Analysis of MspI and HpaII restriction pattern on M. brassicae DNA showed that a portion of its genome was methylated at CpG sites. Moreover, the absence of small digestion products after MspI digestion suggested that CpG are not clustered in the cabbage moth genome. Finally, methylation of repeated DNAs has been studied. Comparison of the restriction pattern of MspI and HpaII after hybridisation with the hobo, mariner, 28S and 5S rDNA probes did not evidence any difference indicating the absence of CpG methylation in all the studied repeated DNAs.  相似文献   

20.
A tandemly repeated DNA sequence (RRS7) was isolated from Oryza alta (CCDD). RRS7-related sequences were also found tandemly arrayed in genomes AA, BB, BBCC, CC, and EE, and a small amount of RRS7-related sequences were detected in genome FF and the Oryza species with unknown genomes. DNA sequence analysis of the 1844-bp insert of RRS7 revealed that it contained six tandemly repeated units, of which five were 155 bp in length and one was 194 bp in length and contained an imperfect internal 39-bp duplication. Southern blot analysis showed that the boundary sequence contained in RRS7 is a single-copy sequence. A 155-bp consensus sequence derived from the six monomeric repeats contained no internal repeat and showed no significant homology to other currently known sequences. The results of Southern blot and sequence analysis revealed that there are at least two subfamilies present in the RRS7 family; these are represented by the DraI site and the MspI site, respectively. Restriction digestion with two pairs of isoschizomers MboI/Sau3A and MspI/HpaII demonstrated that most of the C residues in the GATC sites and the internal C in the CCGG sites of the RRS7 family in O. Alta were methylated. The usefulness of the RRS7 family in determining the evolutionary relationship of the genome DD and other Oryza genomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号