首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
迷走神经背核的研究进展   总被引:10,自引:0,他引:10  
迷走神经背核(DMV)是一个重要的内脏运动核团和内脏感觉核团。DMV与中枢及外周存在广泛的纤维联系。DMV和孤束核、最后区一起构成了“迷走感觉运动中枢”。DMV存在神经-体液回路,使DMV神经元可以直接感受外周血及脑脊液中的信息。DMV含乙酰胆碱、儿茶酚胺、神经肽类等多种递质及相应受体。DMV参与中枢调节胃肠、心血管及内分泌等生理功能。  相似文献   

2.
孙洪兆 《生命科学》2012,(6):588-592
神经解剖学和生理学的研究证明,迷走神经背核(dorsal motor nucleus of the vagus,DMV)是调控胃机能的重要副交感初级中枢。支配胃的迷走神经纤维主要发自于延髓的DMV。就DMV的细胞构筑和突触联系、DMV对胃的神经支配、电刺激DMV对胃机能的影响以及DMV内的神经递质和受体对胃机能的调控进行综述。  相似文献   

3.
We previously reported that the activation of water-responsive afferents in the superior laryngeal nerve was responsible for the inhibition of gastric motility. The present study was undertaken to clarify the roles of the vagal preganglionic neurons responsible for laryngeal afferent-mediated inhibition of gastric motility. Intravenous injection of atropine abolished the inhibition of motility in both the distal and the proximal stomach induced by water administration into the larynx. The neurons in the dorsal motor nucleus of the vagus (DMV), which project to the abdominal viscera, were exclusively inhibited by water administration. Taken together, inhibition of neurons in the DMV induces inhibition of gastric motility evoked by laryngeal water-responsive afferents via a cholinergic pathway. Because chemical lesions of the intermediate DMV, but not the caudal DMV, abolished the inhibition of the distal stomach motility induced by water administration, the intermediate DMV is responsible for the inhibition shown in the distal stomach.  相似文献   

4.
The neurons of origin of the right vagus and its components in both the monkey (Macaca fascicularis) and albino rats were localized by the retrograde transport of horseradish peroxidase (HRP) applied to the stomach wall, the vagal trunk and its recurrent laryngeal branch. An attempt was also made to localize the neurons forming the superior laryngeal nerve and those supplying the thoracic organs by a combination of operative procedures. The results showed that the stomach was innervated by neurons distributed throughout the entire rostrocaudal extent of the dorsal motor nucleus (DMN) on both sides of the brain stem. Neurons scattered throughout the entire extent of the DMN and nucleus ambiguus (NA) supplied the thoracic viscera. There did not appear to be any topographic arrangement in the DMN neurons supplying the abdominal and thoracic viscera as reported by other workers, and there was no clear evidence of crossing of vagal fibers in the monkey brain stem, though such crossing was seen in the rat brain stem. Both the superior and inferior ganglia of the vagus nerve were labeled following application of HRP to the vagal trunk. Neurons in the caudal part of the NA gave rise to fibers in the ipsilateral recurrent laryngeal nerve, at least on the right side. The neurons giving rise to the superior laryngeal nerve could not be delineated in this study. In all the experimental procedures described, the hypoglossal nucleus was labeled only after applying HRP to the hypoglossal nerve.  相似文献   

5.
In previous single-labeling experiments, we showed that neurons in the nucleus ambiguous (NA) and the dorsal moto nucleus of the vagus (DmnX) project to intrinsic cardiac ganglia. Neurons in these two motor nuclei differ significantly in the size of their projection fields, axon caliber, and endings in cardiac ganglia. These differences in NA and DmnX axon cardiac projections raise the question as to whether they target the same, distinct, or overlapping populations of cardiac principal neurons. To address this issue, we examined vagal terminals in cardiac ganglia and trace injection sites in the brain stem using two different anterograde t ace s 1,1-dioleyl-3,3,3,3-tetramethylindocarbocyanine methanesulfonate and 4-[4-(dihexadecylamino)-styryl]-N-methylpyridinium iodide] and confocal microscopy in male Sprague-Dawley rats. We found that 1) NA and DmnX neurons innervate the same cardiac ganglia, but these axons target separate subpopulations of principal neurons and 2) axons arising from neurons in the NA and DmnX in the contralateral sides of the brain stem enter the cardiac ganglionic plexus through separate bundles and preferentially innervate principal neurons near their entry regions, providing topographic mapping of vagal motor neurons in left and right brain stem vagal nuclei. Because the NA and DmnX project to distinct populations of cardiac principal neurons, we propose that they may play different roles in controlling cardiac function.  相似文献   

6.
7.
Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.  相似文献   

8.
Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the numbers of Fos-like immunoreactive neurons were observed in the ipsilateral PBN, nucleus of the solitary tract (NST), and central amygdala. The increase in neurally-activated cells within the ventral subdivision (V) of the rostral NST is particularly noteworthy because of its projections to medullary oromotor centers. A modest increase in labeled neurons occurred bilaterally within the gustatory cortex. Although there were trends for an increase in Fos-labeled neurons in the gustatory thalamus and medullary reticular formation, most changes in labeled neurons in these areas were not statistically significant. Linear regression analysis revealed a relationship between the number of taste reactivity (TR) behaviors performed during PBN stimulation and the number of Fos-like immunoreactive neurons in the caudal PBN and V of the rostral NST. These data support a role for neurons in W of the PBN and the ventral rostral NST in the initiation of TR behaviors.  相似文献   

9.
Nitric oxide synthase-immunoreactive (NOS-IR) neurons in the rat caudal dorsal motor nucleus of the vagus (DMV) project selectively to the gastric fundus and may be involved in vagal reflexes controlling gastric distension. This study aimed to identify the gastric projections of tyrosine hydroxylase-immunoreactive (TH-IR) DMV neurons, whether such neurons colocalize NOS-IR, and if they are activated after esophageal distension. Gastric-projecting neurons were identified after injection of retrograde tracers into the muscle wall of the gastric fundus, corpus, or antrum/pylorus before removal and processing of the brain stems for TH- and NOS-IR. A significantly higher proportion of corpus- compared with fundus- and antrum/pylorus-projecting neurons were TH-IR (14% compared with 4% and 2%, respectively, P < 0.05). Colocalization of NOS- and TH-IR was never observed in gastric-projecting neurons. In rats tested for c-Fos activation after intermittent esophageal balloon distension, no colocalization with TH-IR was observed in DMV neurons. These findings suggest that TH-IR neurons in the caudal DMV project mainly to the gastric corpus, constitute a subpopulation distinct from that of nitrergic vagal neurons, and are not activated on esophageal distension.  相似文献   

10.
The modulatory effects of Zn(2+) and other divalent cations on the ATP-induced responses of preganglionic neurons acutely dissociated from the rat dorsal motor nucleus of the vagus (DMV) were examined using a nystatin-perforated patch technique under voltage-clamp. DMV neurons were identified by back-filling of DiI placed on the vagal bundle at the neck. Zn(2+) exerts a concentration-dependent effect on P2X receptor-mediated current (I(ATP)): a potentiation by low concentrations of Zn(2+) (< or = 50 microM) and an inhibition by high concentrations (> 50 microM). Inhibition of the ATP response was associated with a prolongation of the rising phase of I(ATP). Cu(2+) mimicked Zn(2+) regarding the biphasic modulation of I(ATP). On the other hand, Ni(2+) potentiated, but failed to inhibit, the ATP response even at a concentration of 3 mM. Quantitative RT-PCR revealed the similarity of P2X(2) mRNA expression between the DMV and superior cervical ganglion (SCG) but not in the dorsal root ganglion (DRG) and hypoglossal nucleus (XII). The results from the electrophysiological and molecular approaches suggest that functional P2X receptors expressed in DMV neurons are characterized mainly by the P2X(2) and P2X(2/6) subtype. DMV neurons possess similar P2X receptor characteristics to SCG neurons.  相似文献   

11.
Summary Morphological and physiological approaches were used to investigate the possible role of an adrenergic innervation of the dorsal vagal complex in the control of basal gastric acid and pancreatic insulin secretion in the rat. The use of retrograde-tracing methods with injections of True Blue or of wheat-germ agglutinin into the stomach or pancreas first confirmed that most vagal preganglionic neurons innervating these two viscera are localized in the dorsal motor nucleus of the vagus, a number of them connected to both viscera. Light- and electron-microscopic investigation of the organization of adrenergic neuronal structures immunoreactive to phenylethanolamine-N-methyltransferase within this medullary nucleus further revealed: (i) that adrenergic axons establish profuse synaptic connections of the symmetrical type with perikarya and dendrites of this nucleus, and (ii) that several of these adrenergic fibers are connected with retrogradely labeled neurons innervating the stomach and/or pancreas. Lastly, measurements of basal gastric acid output and plasma insulin clearly indicated that both visceral secretions are rapidly and conspicuously decreased by local infusion of 2 nM adrenaline within the dorsal vagal complex. Taken together, these data strongly suggest that the adrenergic innervation of the dorsal medulla oblongata is involved in direct synaptic inhibition of the parasympathetic preganglionic neurons of the vagus that control secretion of gastric acid and pancreatic insulin.  相似文献   

12.
We tested the hypothesis that application of the subunit B of cholera toxin (CTB) to the airway mucosa would produce labeling of neuronal somata and sensory fibers in the medulla oblongata. Using (125)I-CTB as a tracer, we demonstrated first that CTB is transported across the tracheal epithelium, but once in the airway wall, it remains confined to the subepithelial space and lamina propria. Despite the rarity of intrinsic neurons in these areas, intraluminal CTB labeled approximately 10-60 neurons/rat in the nucleus ambiguus and a smaller number of neurons in the dorsal motor nucleus of the vagus. Well-defined sensory fiber terminals were also labeled in the commissural, medial, and ventrolateral subnuclei of the nucleus of the tractus solitarius. Approximately 50 and 90% of the neurons labeled by intraluminal CTB were also labeled by injections of FluoroGold into the tracheal adventitia and lung parenchyma, respectively. These findings demonstrate that a substantial number of medullary vagal motoneurons innervate targets in the vicinity of the airway epithelium. These neurons do not appear to be segregated anatomically from vagal motoneurons that project to deeper layers of the airway wall or lung parenchyma.  相似文献   

13.
Retrograde transport of cholera toxin conjugated with horseradish peroxidase in the postnatal rat has revealed remarkable features of dendritic fields of vagal motor neurons in the medulla oblongata and cervical spinal cord during the period of early development (0-10 days). At birth, vagal motor neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus, nucleus retroambigualis, nucleus dorsomedials and the spinal nucleus of the accessory nerve are small with relatively few, unbranched processes. The span of the dendritic tree is much smaller than that found in adult animals. By the postnatal Day 2 there are marked changes in the soma as well as in the dendritic tree of these neurons. There is dispersion of the cell bodies within the neuropil as well as an expansion of the total area of the brain stem occupied by these motor neurons and their dendritic processes which show extensive growth and branching. By postnatal Day 3 the most extensive proliferation of these neurons is seen and appears to represent the peak of dendritic growth of vagal motor neurons such that the area occupied by the dendritic tree of a single neuron is three times that seen in an adult rat. This proliferation gradually decreased during the subsequent seven days of early development (i.e. Days 4-10) so that by Day 10 the dendritic span of vagal motor neurons was reduced to about twice the adult size. This growth progressively decreased from Days 10 to 30 at which time adult levels were reached. Ultrastructural examination of these horseradish peroxidase labeled dendrites showed a positive correlation between the number of dendritic processes and the number of axo-dendritic synapses. This was accompanied by an increase in the number of identifiable synaptic junctions. These morphological complexities observed during the period of early development of vagal motor neurons indicate that the vagus nerve undergoes dramatic changes during the period of early development including the establishment of numerous synaptic contacts between vagal afferents and efferents in the brainstem. A number of these changes occur in developing dendritic fields of vagal motor neurons during the first three days of neonatal life. It is reasonable to assume that developmental abnormalities during this "critical period" could produce significant functional changes in the pattern of respiration as well as in the control of airway smooth muscle.  相似文献   

14.
In an attempt to identify the distribution and structure of vagal fibers and terminals in the gastroduodenal junction, vagal efferents were labeled in vivo by multiple injections of the fluorescent carbocyanine dye DiA into the dorsal motor nucleus (dmnX), and vagal afferents were anterogradely labeled by injections of DiI into the nodose ganglia of the same or separate rats. Thick frontal cryostat sections were analysed either with conventional or laser scanning confocal microscopy, using appropriate filter combinations and/or different wavelength laser excitation to distinguish the fluorescent tracers. Vagal efferent terminal-like structures were present in small ganglia within the circular sphincter muscle, which, in the absence of a well-developed, true myenteric plexus at this level, represent the myenteric ganglia. Furthermore, vagal efferent terminals were also present in submucosal ganglia, but were absent from mucosa, Brunner's glands and circular muscle fibers. Vagal afferent fibers and terminal-like structures were more abundant than efferents. The most prominent afferent terminals were profusely branching, large net-like aggregates of varicose fibers running within the connective tissue matrix predominantly parallel to the circular sphincter muscle bundles. Profusely arborizing, highly varicose endings were also present in large myenteric ganglia of the antrum and duodenum, in the modified intramuscular ganglia, and in submucosal ganglia. Additionally, afferent fibers and terminals were present throughout the mucosal lining of the gastroduodenal junction. The branching patterns of some vagal afferents suggested that individual axons produced multiple collaterals in different compartments. NADPH-diaphorase positive, possibly nitroxergic neurons were present in myenteric ganglia of the immediately adjacent antrum and duodenum, and fine varicose fibers entered the sphincter muscle from both sides, delineating the potential vagal inhibitory postganglionic innervation. These morphological results support the view of a rich and differentiated extrinsic neural control of this important gut region as suggested by functional studies.Abbreviations BSA Bovine serum albumin - CGRP calcitonin generelated peptide - DiA carbocyanine dye A - DiI carbocyanine dye I - dmnX dorsal motor nucleus of vagus - DMSO dimethylsulfoxide - ENK enkephalin - FITC fluorescin isothiocyanate - NADPH diaphorase nicotinamide adenine diphosphate - NPY neuropeptide Y - NTS nucleus tractus solitarii - PBS phosphate-buffered saline - VIP vasoactive intestinal peptide - WGA-HRP wheat-germ agglutinine-horseradish peroxidase  相似文献   

15.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus nerve up to the central terminations were carefully dissected and placed in a perfusion chamber. Intracellular recordings were made from the soma of nodose neurons during mechanical stimulation of the stomach. Physiologically characterized neurons were labeled iontophoretically with neurobiotin and processed for immunohistochemical experiments. As shown by action potential responses triggered by stimulation of the upper thoracic vagus with a suction electrode, essentially all abdominal vagal afferents in mice conduct in the C-fiber range. Mechanosensitive gastric afferents encode stimulus intensities over a wide range without apparent saturation when punctate stimuli are used. Nine of 37 mechanosensitive vagal afferents expressed TRPV1 immunoreactivity, with 8 of the TRPV1-positive cells responding to stretch. A small number of mechanosensitive gastric vagal afferents express neurofilament heavy chains and did not respond to stretch. By maintaining the structural and functional integrity of vagal afferents up to the nodose ganglion, physiological and immunohistochemical properties of mechanosensory gastric sensory neurons can be studied in vitro. Using this novel technique, we identified TRPV1 immunoreactivity in only one-fourth of gastric mechanosensitive neurons, arguing against a major role of this ion channel in sensation of mechanical stimuli under physiological conditions.  相似文献   

16.
A stimulation of the gigantocellular tegmental field (FTG) in the medulla oblongata often increases systemic arterial blood pressure (SAP) and decreases heart rate (HR). We investigated if the cardioinhibitory/depressor areas, including the nucleus ambiguus (NA), the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), underlied the functional expression of FTG neurons in regulating cardiovascular responses. In 73 chloralose-urethane anesthetized cats, the HR, SAP and vertebral nerve activity (VNA) were recorded. Neurons in the FTG, NA, DMV and CVLM were stimulated by microinjection of sodium glutamate (25 mM Glu, 70 nl). To study if the NA, DMV, and CVLM relayed the cardioinhibitory messages from the FTG, 24 mM kainic acid (KA, 100 nl) was used as an excitotoxic agent to lesion neurons in the NA, DMV or CVLM. We found that the cardioinhibition induced by FTG stimulation was significantly reduced by KA lesioning of the ipsilateral NA or DMV. Subsequently, a bilateral KA lesion of NA or DMV abolished the cardioinhibitory responses of FTG. Compared to the consequence of KA lesion of the DMV, only a smaller bradycardia was induced by FTG stimulation after KA lesion of the NA. The pressor response induced by Glu stimulation of the FTG was reduced by the KA lesion of the CVLM. Such an effect was dominant ipsilaterally. Our findings suggested that both NA and DMV mediated the cardioinhibitory responses of FTG. The pressor message from the FTG neurons might be partly working via a disinhibitory mechanism through the depressor neurons located in the CVLM.  相似文献   

17.
T S Gray 《Peptides》1983,4(5):663-668
Three types of somatostatin-immunoreactive neurons are described in the lateral nucleus of the rat amygdala. These three types closely correspond to neurons previously reported in Golgi preparations of the lateral nucleus. Class I somatostatin neurons have triangular- or piriform-shaped somata with large primary dendrites and spiny secondary dendrites. Class II somatostatin neurons have small to medium-sized oval perikarya and are fusiform or multipolar in shape. Class III somatostatin neurons have small spheroid somata with small thinner relatively aspinous dendrites. Class I somatostatin neurons give rise to axons which project outside the lateral nucleus whereas class II and III neurons innervate other somatostatin-positive and non-somatostatin neurons within the lateral nucleus. Somatostatin neurons within the lateral nucleus are hypothesized to function as part of a network of somatostatin neurons extending from cortical regions through the amygdala to basal telencephalic and lower brain stem regions.  相似文献   

18.
The dorsal motor nucleus of the vagus (DMV) is pivotal in the regulation of upper gastrointestinal functions, including motility and both gastric and pancreatic secretion. DMV neurons receive robust GABA- and glutamatergic inputs. Microinjection of the GABA(A) antagonist bicuculline (BIC) into the DMV increases pancreatic secretion and gastric motility, whereas the glutamatergic antagonist kynurenic acid (KYN) is ineffective unless preceded by microinjection of BIC. We used whole cell patch-clamp recordings with the aim of unveiling the brain stem neurocircuitry that uses tonic GABA- and glutamatergic synapses to control the activity of DMV neurons in a brain stem slice preparation. Perfusion with BIC altered the firing frequency of 71% of DMV neurons, increasing firing frequency in 80% of the responsive neurons and decreasing firing frequency in 20%. Addition of KYN to the perfusate either decreased (52%) or increased (25%) the firing frequency of BIC-sensitive neurons. When KYN was applied first, the firing rate was decreased in 43% and increased in 21% of the neurons; further perfusion with BIC had no additional effect in the majority of neurons. Our results indicate that there are several permutations in the arrangements of GABA- and glutamatergic inputs controlling the activity of DMV neurons. Our data support the concept of brain stem neuronal circuitry that may be wired in a finely tuned organ- or function-specific manner that permits precise and discrete modulation of the vagal motor output to the gastrointestinal tract.  相似文献   

19.
The present study was to investigate the localization of preganglionic parasympathetic neurons of gallbladder in brain stem by anatomical and functional approaches. Male or female rabbits (n = 11) were anesthetized with sodium pentobarbital (30 mg/kg, i.v.). Cholera toxin B conjugated to horseradish peroxidase (CB-HRP) was injected into the gallbladder wall. Four days later, animals were re-anesthetized and perfused transcardially with paraformaldehyde solution in a 0.1 M phosphate buffer. The rabbit brain was then frozenly sectioned. The sections were processed for HRP label and stained with neutral red. Another group of rabbits (n = 54) were anesthetized by urethane (1 g/kg) after fasting for 18-24 hours, Gallbladder pressure (GP) was measured by inserting a frog bladder filled with normal saline into the gallbladder. Myoelectrical activity of the sphincter of Oddi (SO) was induced by a pair of copper electrodes. A glass tube (30 microm tip diameter) connected with a microsyringe was directed to the dorsal vagal complex (DVC) for microinjection. Majority of retrogradely labeled cells was found bilaterally in dorsal motor nucleus of the vagus nerve (DMV) throughout the length, except the rostral and caudal part. These cells were distributed in subnuclei parvicellularis or mediocellularis of DMV. Some labeled perikarya located in the medial subnucleus of the solitary tract (mNTS). Thyrotropin-releasing hormone (TRH, 1.3 mmol/L, 0.2 microl) microinjected into the rostral portion of the DVC (including DMV and NTS) enhanced the motility of gallbladder and SO. Microinjection of TRH at the middle part of DVC seldom induces excitatory effects on the gallbladder or SO. TRH microinjected into the caudal portion of the DVC elicited weaker response of gallbladder and SO than rostral portion. Our results indicated that DMV is one of the most important original nuclei of gallbladder's vagus nerves and mNTS may be also involved in the control of gallbladder's parasympathetic activity. Neurons that innervate the gallbladder distribute at most part of DVC, and are relatively dense at rostral and caudal position of DMV.  相似文献   

20.
We previously reported that noradrenergic (NA) neurons in the nucleus of the solitary tract (NST) are necessary for exogenous CCK octapeptide to inhibit food intake in rats. To determine whether NST NA neurons also are necessary for lithium chloride (LiCl) to inhibit food intake and/or to support conditioned avoidance behavior, saporin toxin conjugated to an antibody against dopamine beta hydroxylase (DSAP) was microinjected bilaterally into the NST to ablate resident NA neurons. DSAP and sham control rats subsequently were tested for the ability of LiCl (0.15M, 2% body wt) to inhibit food intake and to support conditioned flavor avoidance (CFA). LiCl-induced hypophagia was significantly blunted in DSAP rats, and those with the most extensive loss of NST NA neurons demonstrated the most attenuated LiCl-induced hypophagia. Conversely, LiCl supported a robust CFA that was of similar magnitude in sham control and DSAP rats, including rats with the most extensive NA lesions. A terminal c-Fos study revealed intact LiCl-induced c-Fos expression in the lateral parabrachial nucleus and central amygdala in DSAP rats, despite significant loss of NST NA neurons and attenuated c-Fos activation of corticotropin-releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus (PVN). Thus, NST NA neurons contribute significantly to LiCl-induced hypophagia and recruitment of stress-responsive PVN neurons but appear to be unnecessary for CFA learning and expression. These findings support the view that distinct central nervous system circuits underlie LiCl-induced inhibition of food intake and conditioned avoidance behavior in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号