首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the polypeptide chain, using for the ligand residues a set of charges that is modified with respect to the apo form of the protein by the presence of the copper ion.The results show that the different charge values do not lead to relevant effects on the geometry of the active site of the protein, as long as bond distance constraints are used for all the five ligand atoms. The distance constraint on the O atom of Gly45 can be removed without altering the active site geometry. The coordination between Cu and the other axial ligand Met121 is outlined as being flexible. Differences are found between the bonds of the copper ion with the two apparently equivalent N1 atoms of His46 and His117.The overall findings are discussed in connection with the issue of determining a model for the active site of azurin suitable to be used in molecular dynamics simulations under unfolding conditions. Figure Model of azurin active site. Copper ligand residues are cut off at C position except Gly45, for which the portion of backbone connecting it to His46 is shown. Only polar H atoms are shown. All atoms are in standard colors (Cu in violet), and the five ligands are labeled  相似文献   

2.
Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues.  相似文献   

3.
The active site of acetylcholinesterase (AChE) from Torpedo californica is located 20 A from the enzyme surface at the bottom of a narrow gorge. To understand the role of this gorge in the function of AChE, we have studied simulations of its molecular dynamics. When simulations were conducted with pure water filling the gorge, residues in the vicinity of the active site deviated quickly and markedly from the crystal structure. Further study of the original crystallographic data suggests that a bis-quaternary decamethonium (DECA) ion, acquired during enzyme purification, residues in the gorge. There is additional electron density within the gorge that may represent small bound cations. When DECA and 2 cations are placed within the gorge, the simulation and the crystal structure are dramatically reconciled. The small cations, more so than DECA, appear to stabilize part of the gorge wall through electrostatic interactions. This part of the gorge wall is relatively thin and may regulate substrate, product, and water movement through the active site.  相似文献   

4.
Kunitz 型丝氨酸蛋白酶抑制剂结构与功能研究   总被引:2,自引:0,他引:2  
蛋白酶抑制剂在酶学及蛋白质的结构与功能关系研究中有重要意义,Kunitz型丝氨酸蛋白酶抑制剂是其中最重要的,也是研究最广泛的蛋白酶抑制剂之一.该类蛋白酶抑制剂三维结构高度保守:由一个明显的疏水核心、三对高度保守的二硫键桥、三链β-折叠和一个N端3 10螺旋及一个C端α-螺旋组成.3对二硫键对分子空间结构的稳定起着非常重要的作用.这一类型抑制剂有5个主要的活性位点:P1、P1’、P3、P3’、P4,它们都位于一个溶剂暴露的环上.P1位点是抑制作用的关键活性位点,抑制剂的专一性由P1位点氨基酸残基的性质决定;P1’位点氨基酸残基的侧链大小对抑制剂.酶的结合常数有很大影响,用大的侧链残基取代会导致结合常数降低;P4位点残基被取代经常产生负效应,会导致活性区域环的构象发生很大改变,从而影响酶与抑制剂的结合.  相似文献   

5.
Human immunodeficiency virus type 1 protease is essential for virus replication and maturation and has been considered as one of the important drug target for the antiretroviral treatment of HIV infection. The majority of HIV infections are caused due to non-B subtypes in developing countries. Subtype AE is spreading rapidly and infecting huge population worldwide. Understanding the interdependence of active and non-active site mutations in conferring drug resistance is crucial for the development effective inhibitors in subtype AE protease. In this work, we have investigated the mechanism of resistance against indinavir (IDV) due to therapy selected active site mutation V82F, non-active site mutations PF82V and their cooperative effects PV82F in subtype AE-protease using molecular dynamics simulations and binding free energy calculations. The simulations suggested all the three complexes lead to decrease in binding affinity of IDV, whereas the PF82V complex resulted in an enhanced binding affinity compared to V82F and PV82F complexes. Large positional deviation of IDV was observed in V82F complex. The preservation of hydrogen bonds of IDV with active site Asp25/Asp25′ and flap residue Ile50/50′ via a water molecule is crucial for effective binding. Owing to the close contact of 80s loop with Ile50′ and Asp25, the alteration between residues Thr80 and Val82, further induces conformational change thereby resulting in loss of interactions between IDV and the residues in the active site cavity, leading to drug resistance. Our present study shed light on the effect of active, non-active site mutations and their cooperative effects in AE protease.

Communicated by Ramaswamy H. Sarma  相似文献   


6.
Gale AJ  Griffin JH 《Proteins》2004,54(3):433-441
Activation of the anticoagulant human plasma serine protease zymogen, protein C, by a complex of thrombin and the membrane protein, thrombomodulin, generates activated protein C, a physiologic anti-thrombotic, anti-inflammatory and anti-apoptotic agent. Alanine-scanning site-directed mutagenesis of residues in five surface loops of an extensive basic surface on protein C was used to identify residues that play essential roles in its activation by the thrombin-thrombomodulin complex. Twenty-three residues in the protein C protease domain were mutated to alanine, singly, in pairs or in triple mutation combinations, and mutants were characterized for their effectiveness as substrates of the thrombin-thrombomodulin complex. Three protein C residues, K192, R229, and R230, in two loops, were identified that provided major contributions to interactions with thrombin-thrombomodulin, while six residues, S190, K191, K217, K218, W231, and R312, in four loops, appeared to provide minor contributions. These protein C residues delineated a positively charged area on the molecule's surface that largely overlapped the previously characterized factor Va binding site on activated protein C. Thus, the extensive basic surface of protein C and activated protein C provides distinctly different, though significantly overlapping, binding sites for recognition by thrombin-thrombomodulin and factor Va.  相似文献   

7.
Proteinase K, the extracellular serine endopeptidase (E.C. 3.4.21.14) from the fungus Tritirachium album limber, is homologous to the bacterial subtilisin proteases. The binding geometry of the synthetic inhibitor carbobenzoxy-Ala-Phechloromethyl Ketone to the active site of proteinase K was the first determined from a Fourier synthesis based on synchrotron X-ray diffraction data between 1.8 Å and 5.0 Å resolution. The protein inhibitor complexes was refined by restrained least-squares minimization with the data between 10.0 and 1.8 Å. The final R factor was 19.1% and the model contained 2,018 protein atoms, 28 inhibitors atoms, 125 water molecules, and two Ca2+ ions. The peptides portion of the inhibitor is bound to the active center of proteinase K by means of a three-stranded antiparallel pleated sheet, with the side chain of the phenylalanine located in the P1 site. Model building studies, with lysine replacing phenylalanine in the inhibitor, explain the relatively unspecific catalytic activity of the enzyme.  相似文献   

8.
Prostasin or human channel‐activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d‐FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca+2. Comparison of the structures with each other and with other members of the trypsin‐like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca+2 cations. This induced fit active site provides a new possible mode of regulation of trypsin‐like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.  相似文献   

9.
The structure of two selective inhibitors, Ac-Tyr-Ile-Arg-Ile-Pro-NH2 and Ac-(4-Amino-Phe)-(Cyclohexyl-Gly)-Arg-NH2, in the active site of the blood clotting enzyme factor Xa was determined by using transferred nuclear Overhauser effect nuclear magnetic resonance (NMR) spectroscopy. They represent a family of peptidic inhibitors obtained by the screening of a vast combinatorial library. Each structure was first calculated by using standard computational procedures (distance geometry, simulated annealing, energy minimization) and then further refined by systematic search of the conformation of the inhibitor docked in the active site and repeating the simulated annealing and energy minimization. The final structure was optimized by molecular dynamics simulations of the inhibitor-complex in water. The NMR restraints were kept throughout the refinement. The inhibitors assume a compact, very well defined conformation, embedded into the substrate binding site not in the same way as a substrate, blocking thus the catalysis. The model allows to explain the mode of action, affinity, and specificity of the peptides and to map the active site. Proteins 30:264–279, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Caspases are cysteine proteases that play a critical role in the initiation and regulation of apoptosis. These enzymes act in a cascade to promote cell death through proteolytic cleavage of intracellular proteins. Since activation of apoptosis is implicated in human diseases such as cancer and neurodegenerative disorders, caspases are targets for drugs designed to modulate their action. Active caspases are heterodimeric enzymes with two symmetrically arranged active sites at opposite ends of the molecule. A number of crystal structures of caspases with peptides or proteins bound at the active sites have defined the mechanism of action of these enzymes, but molecular information about the active sites before substrate engagement has been lacking. As part of a study of peptidyl inhibitors of caspase-3, we crystallized a complex where the inhibitor did not bind in the active site. Here we present the crystal structure of the unoccupied substrate-binding site of caspase-3. No large conformational differences were apparent when this site was compared with that in enzyme-inhibitor complexes. Instead, the 1.9 A structure reveals critical side chain movements in a hydrophobic pocket in the active site. Notably, the side chain of tyrosine204 is rotated by approximately 90 degrees so that the phenol group occupies the S2 subsite in the active site. Thus, binding of substrate or inhibitors is impeded unless rotation of this side chain opens the area. The positions of these side chains may have important implications for the directed design of inhibitors of caspase-3 or caspase-7.  相似文献   

11.
Native and immobilized preparations of penicillin acylase from Escherichia coli and Alcaligenes faecalis were studied using an active site titration technique. Knowledge of the number of active sites allowed the calculation of the average turnover rate of the enzyme in the various preparations and allowed us to quantify the contribution of irreversible inactivation of the enzyme to the loss of catalytic activity during the immobilization procedure. In most cases a loss of active sites as well as a decrease of catalytic activity per active site (turnover rate) was observed upon immobilization. Immobilization techniques affected the enzymes differently. The effect of increased loading of penicillin acylase on the average turnover rate was determined by active site titration to assess diffusion limitations in the carrier.  相似文献   

12.
Kallikrein, a physiologically vital serine protease, was investigated for its functional and conformational transitions during chemical (organic solvents, Gdn-HCl), thermal, and pH induced denaturation using biochemical and biophysical techniques and molecular dynamics (MD) simulations approach. The enzyme was exceptionally stable in isopropanol and ethanol showing 110% and 75% activity, respectively, after 96 h, showed moderate tolerance in acetonitrile (45% activity after 72 h) and much lower stability in methanol (40% activity after 24 h) (all the solvents [90% v/v]). Far UV CD and fluorescence spectra indicated apparent reduction in compactness of KLKp structure in isopropanol system. MD simulation studies of the enzyme in isopropanol revealed (1) minimal deviation of the structure from native state (2) marginal increase in radius of gyration and solvent accessible surface area (SASA) of the protein and the active site, and (3) loss of density barrier at the active site possibly leading to increased accessibility of substrate to catalytic triad as compared to methanol and acetonitrile. Although kallikrein was structurally stable up to 90 °C as indicated by secondary structure monitoring, it was functionally stable only up to 45 °C, implicating thermolabile active site geometry. In GdnHCl [1.0 M], 75% of the activity of KLKp was retained after incubation for 4 h, indicating its denaturant tolerance. A molten globule-like structure of KLKp formed at pH 1.0 was more thermostable and exhibited interesting structural transitions in organic solvents. The above results provide deeper understanding of functional and structural stability of the serine proteases at molecular level.  相似文献   

13.
Signaling of the tissue factor‐FVIIa complex regulates angiogenesis, tumor growth, and inflammation. TF‐FVIIa triggers cell signaling events by cleavage of protease activated receptor (PAR2) at the Arg36‐Ser37 scissile bond. The recognition of PAR2 by the FVIIa protease domain is poorly understood. We perform molecular modeling and dynamics simulations to derive the PAR2‐FVIIa interactions. Docking of the PAR2 Arg36‐Ser37 scissile bond to the S1 site and subsequent molecular dynamics leads to interactions of the PAR2 ectodomain with P and P′ sites of the FVIIa catalytic cleft as well as to electrostatic interactions between a stably folded region of PAR2 and a cluster of basic residues remote from the catalytic cleft of FVIIa. To address the functional significance of this interaction for PAR2 cleavage, we employed two antibodies with epitopes previously mapped to this cluster of basic residues. Although these antibodies do not block the catalytic cleft, both antibodies completely abrogated PAR2 activation by TF‐FVIIa. Our simulations indicate a conformation of the PAR2 ectodomain that limits the cleavage site to no more than 33 Å from its membrane proximal residue. Since the active site of FVIIa in the TF‐FVIIa complex is ~75 Å above the membrane, cleavage of the folded conformation of PAR2 would require tilting of the TF‐FVIIa complex toward the membrane, indicating that additional cellular factors may be required to properly align the scissile bond of PAR2 with TF‐FVIIa. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
K Zhang  K S Reddy  G Bunker  B Chance 《Proteins》1991,10(4):279-286
X-ray absorption fine structure experiments were performed to study structural and dynamic aspects of the active site of various forms of myoglobin. The structures determined for deoxyMb, MbCO, and MbO2 are consistent with the structure established by X-ray absorption fine structure experiment and X-ray crystallography. The first shell of ferrous MbNO determined contains 5 nitrogens located at 2.02 A and a short NO bond length of 1.76 A. This study focuses on the change of the XAFS Debye-Waller factor with temperature, which is a measure of thermal and static disorder. It was found that the changes of Debye-Waller factor with temperature for the Mb proteins, except deoxyMb, are consistent with a simple Einstein model, in which a single frequency was assumed for the bond stretching modes. In contrast, the temperature dependence of deoxyMb cannot be fitted to the Einstein model and a large disorder was found at low temperatures, which indicates the existence of conformational substates of the active site.  相似文献   

15.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

16.
Phytases catalyze the release of phosphate by stepwise hydrolysis of phytate, a major source of phosphate in cereal grains, legumes, and oilseeds. Phytase improves, as a feed supplement, the nutritional quality of phytate rich diets and eventually reduce environmental pollution. Recently, phytases from enterobacteriaceae family have attracted industrial interest due to their high specific activity (2500–4000 U/mg). However, only limited information is available concerning structural dynamics of this class of enzymes. In this study, 50 nanosecond molecular dynamics simulation was performed on two Escherichia coli phytase structures (closed and open active site loop) to investigate conformational dynamics of the active site loop. Cluster analysis and principal component analysis (PCA) reveal significant difference in the conformational dynamics of active site compared to reported crystal structure. Molecular dynamic studies indicated that the movement in the active site of E. coli phytase is mainly confined by the active site loop resulted in wider opening of the loop in absence of phytate. The molecular dynamics studies highlight the possible role of loop residues as prerequisite for highly active phytases. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 994–1002, 2010.  相似文献   

17.
Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation.  相似文献   

18.
It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction. © 1998 John Wiley & Sons, Inc. Biopoly 46: 465–474, 1998  相似文献   

19.
Functional interaction among catalytic residues in subtilisin BPN'   总被引:4,自引:0,他引:4  
P Carter  J A Wells 《Proteins》1990,7(4):335-342
Variants of the serine protease, subtilisin BPN', in which the catalytic triad residues (Ser-221, His-64, and Asp-32) are replaced singly or in combination by alanine retain activities with the substrate N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (sAAPF-pna) that are at least 10(3) to 10(4) above the non-enzymatic rate [Carter, P., Wells, J.A. Nature (London) 322:564-568, 1988]. A possible source of the residual activity was the hydrogen bond with the N delta 2 of Asn-155 that helps to stabilize the oxyanion generated in the tetrahedral transition state during amide bond hydrolysis by the wild-type enzyme. Replacing Asn-155 by Gly (N155G) lowers the turnover number (kcat) for sAAPF-pna by 150-fold with virtually no change in the Michaelis constant (KM). However, upon combining the N155G and S221A mutations to give N155G:S221A, kcat is actually 5-fold greater than for the S221A enzyme. Thus, the catalytic role of Asn-155 is dependent upon the presence of Ser-221. The residual activity of the N155G:S221A enzyme (approximately 10(4)-fold above the uncatalyzed rate) is not an artifact because it can be completely inhibited by the third domain of the turkey ovomucoid inhibitor (OMTKY3), which forms a strong 1:1 complex with the active site. The mutations N155G and S221A individually weaken the interaction between subtilisin and OMTKY3 by 1.8 and 2.0 kcal/mol, respectively, and in combination by 2.1 kcal/mol. This is consistent with disruption of stabilizing interactions around the reactive site carbonyl of the OMTKY3 inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site‐specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′‐phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg‐308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti‐hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site‐specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号