首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium occurs in the workplace primarily in the valence forms Cr(III) and Cr(VI). Recent studies have demonstrated that sodium dichromate [Cr(VI)] induces greater oxidative stress as compared with Cr(III), as indicated by the production of reactive oxygen species by peritoneal macrophages and hepatic mitochondria and microsomes, and enhanced excretion of urinary lipid metabolites and hepatic DNA-single strand breaks (SSB) following acute oral administration of Cr(III) and Cr(VI). We have therefore examined the chronic effects of sodium dichromate dihydrate [Cr(VI); 10 mg (33.56 μmol)/kg/day] on hepatic mitochondrial and microsomal lipid peroxidation, enhanced excretion of urinary lipid metabolites including malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), acetone (ACON) and propionaldehyde (PROP), and hepatic DNA damage over a period of 90 days. The maximal increases in hepatic lipid peroxidation and DNA damage were observed at approximately 45 days of treatment. Maximum increases in the urinary excretion of MDA, FA, ACT, ACON and PROP were 3.2-, 2.6-, 4.1-, 3.3- and 2.1-fold, respectively, while a 5.2-fold increase in DNA-SSB was observed. The results clearly indicate that chronic sodium dichromate administration induces oxidative stress resulting in tissue damaging effects which may contribute to the toxicity and carcinogenicity of hexavalent chromium.  相似文献   

2.
Recent studies have described lipid peroxidation to be an early and sensitive consequence of cadmium exposure, and free radical scavengers and antioxidants have been reported to attenuate cadmium-induced toxicity. These observations suggest that cadmium produces reactive oxygen species that may mediate many of the untoward effects of cadmium. Therefore, the effects of cadmium (II) chloride on reactive oxygen species production were examined following a single oral exposure (0.50 LD50) by assessing hepatic mitochondrial and microsomal lipid peroxidation, glutathione content in the liver, excretion of urinary lipid metabolites, and the incidence of hepatic nuclear DNA damage. Increases in lipid peroxidation of 4.0- and 4.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 h after the oral administration of 44 mg cadmium (II) chloride/kg, while a 65% decrease in glutathione content was observed in the liver. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), and acetone (ACON) were determined at 0–96 h after Cd administration. Between 48 and 72 h posttreatment maximal excretion of the four urinary lipid metabolites was observed with increases of 2.2- to 3.6-fold in cadmium (II) chloride-treated rats. Increases in DNA single-strand breaks of 1.7-fold were observed 48 h after administration of cadmium. These results support the hypothesis that cadmium induces production of reactive oxygen species, which may contribute to the tissue-damaging effects of this metal ion.  相似文献   

3.
Chromium and its salts induce cytotoxicity and mutagenesis, and vitamin E has been reported to attenuate chromate-induced cytotoxicity. These observations suggest that chromium produces reactive oxygen species which may mediate many of the untoward effects of chromium. We have therefore examined and compared the effects of Cr(III) (chromium chloride hexahydrate) and Cr(VI) (sodium dichromate) following single oral doses (0.50 ld50) on the production of reactive oxygen species by peritoneal macrophages, and hepatic mitochondria and microsomes in rats. The effects of Cr(III) and Cr(VI) on hepatic mitochondrial and microsomal lipid peroxidation and enhanced excretion of urinary lipid metabolites as well as the incidence of hepatic nuclear DNA damage and nitric oxide (NO) production were also examined. Increases in lipid peroxidation of 1.8- and 2.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 hr after the oral administration of 25 mg Cr(VI)/kg, while increases of 1.2- and 1.4-fold, respectively, were observed after 895 mg Cr(III)/kg. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT) and acetone (ACON) were determined at 0–96 hr after Cr administration. Between 48 and 72 hr post-treatment, maximal excretion of the four urinary lipid metabolites was observed with increases of 1.5- to 5.4-fold in Cr(VI) treated rats. Peritoneal macrophages from Cr(VI) treated animals 48 hr after treatment resulted in 1.4- and 3.6-fold increases in chemiluminescence and iodonitrotetrazolium reduction, indicating enhanced production of Superoxide anion, while macrophages from Cr(III) treated animals showed negligible increases. Increases in DNA single strand breaks of 1.7-fold and 1.5-fold were observed following administration of Cr(VI) and Cr(III), respectively, at 48 hr post-treatment. Enhanced production of NO by peritoneal exudate cells (primarily macrophages) was monitored following Cr(VI) administration at both 24 and 48 hr post-treatment with enhanced production of NO being observed at both timepoints. The results indicate that both Cr(VI) and Cr(III) induce an oxidative stress at equitoxic doses, while Cr(VI) induces greater oxidative stress in rats as compared with Cr(III) treated animals.  相似文献   

4.
Previous studies in our laboratory have shown that the protein toxin ricin induces an oxidative stress in mice, resulting in increased urinary excretion of malondialdehyde (MDA), formaldehyde (FA), and acetone (ACON). Other toxicants have been shown to induce oxidative stress by macrophage activation with subsequent release of reactive oxygen species and tumor necrosis factor alpha (TNF-α). Therefore, the ability of TNF-α antibody to modulate ricin-induced urinary carbonyl excretion as well as hepatic lipid peroxidation, glutathione depletion, and DNA single-strand breaks was assessed. Ricin-induced urinary MDA, FA, and ACON were reduced significantly in mice receiving antibody (15,000 U/kg) 2 hours before treatment with ricin (5 μ/kg). At 48 hours following ricin treatment, MDA, FA, and ACON concentrations in the urine of TNF antibody-treated mice decreased 25.7, 53.2, and 64.5%, respectively, relative to ricin-treated mice receiving no antibody. In addition, anti-TNF-α (1500 U/kg) significantly decreased hepatic lipid peroxidation and DNA single-strand breaks, induced by 5 μg ricin/kg, by 49.3 and 44.2%, respectively. The results suggest that macrophage activation and subsequent release of TNF-α are involved in ricin toxicity.  相似文献   

5.
Reduction of iron is important in promoting xenobiotic-enhanced, microsomal lipid peroxidation, yet there is little evidence that Fe3+ chelates that promote lipid peroxidation can be reduced by the microsomal system. We have shown that rat liver microsomes catalyse NADPH-dependent reduction of Fe3+ without chelator, as well as Fe3+(ADP), Fe3+(ATP), Fe3+(citrate), Fe3+(EDTA), and ferrioxamine in N2. The NADPH oxidation that accompanied Fe3+ reduction was inhibited by CO for all chelates, except Fe3+ (EDTA). This implies that, except for Fe3+ (EDTA), cytochrome P450 was involved in reduction of the complexes. Adriamycin, paraquat, and anthraquinone 2-sulfonate (AQS) enhanced reduction of all the Fe3+ chelates, whereas menadione enhanced reduction only of Fe3+(ADP) and Fe3+(citrate). All the compounds enhanced oxidation of NADPH in the presence or absence of iron. This was not inhibited by CO, and the results are compatible with Fe3+ reduction occurring via the xenobiotic radicals produced by cytochrome P450 reductase. Microsomal reduction of the xenobiotics, except menadione, enabled the reduction and release of iron from ferritin. Fe3+ chelate reduction, both with and without xenobiotic, was inhibited by O2, although it still proceeded in air at 10-20% of the rate in N2. Iron-dependent lipid peroxidation was promoted by ADP and ATP, inhibited 50% by citrate, and completely inhibited by EDTA and desferrioxamine. Of the xenobiotics, only Adriamycin enhanced microsomal lipid peroxidation. These results indicate that the effects of chelators and xenobiotics on Fe3+ reduction do not correlate with lipid peroxidation and, although reduction is necessary, there must be other factors involved.  相似文献   

6.
It has been postulated that tumor suppressor genes are involved in the cascade of events leading to the toxicity of diverse xenobiotics. Therefore, we have assessed the comparative effects of 0.01, 0.10, and 0.50 median lethal doses (LD(50)) of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), endrin, naphthalene, and sodium dichromate (VI) [Cr(VI)] on lipid peroxidation, DNA fragmentation, and enhanced production of superoxide anion (cytochrome c reduction) in liver and brain tissues of p53-deficient and standard C57BL/6NTac mice to determine the role of p53 gene in the toxic manifestations produced by these diverse xenobiotics. In general, p53-deficient mice are more susceptible to all four xenobiotics than C57BL/6NTac mice, with dose-dependent effects being observed. Specifically, at a 0.50 LD(50) dose, naphthalene and Cr(VI) induced the greatest toxicity in the liver tissue of mice, and naphthalene and endrin exhibited the greatest effect in the brain tissue. At this dose, TCDD, endrin, naphthalene, and Cr(VI) induced 2.3- to 3.7-fold higher increases in hepatic lipid peroxidation and 1.8- to 3.0-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. At a 0. 10 LD(50) dose, TCDD, endrin, naphthalene, and Cr(VI) induced 1.3- to 1.8-fold higher increases in hepatic lipid peroxidation and 1.4- to 1.9-fold higher increases in brain lipid peroxidation in p53-deficient mice than in C57BL/6NTac mice. Similar results were observed with respect to DNA fragmentation and cytochrome c reduction (superoxide anion production). For example, at the 0.10 LD(50) dose, the four xenobiotics induced increases of 1.6- to 3. 0-fold and 1.5- to 2.1-fold in brain and liver DNA fragmentation, respectively, and increases of 1.5- to 2.3-fold and 1.4- to 2.5-fold in brain and liver cytochrome c reduction (superoxide anion production), respectively, in p53-deficient mice compared with control C57BL/6NTac mice. These results suggest that the p53 tumor suppressor gene may play a role in the toxicity of structurally diverse xenobiotics.  相似文献   

7.
The phase and colloidal properties of phosphatidylcholine/fatty acid (PC/FA) mixed vesicles have been investigated by optical methods, acid-base titration, and theoretically as a function of temperature (5-80 degrees C), molar lipid ratio (0-1), lipid chain length (C14-C18), headgroup ionization (1.5 less than or equal to pH less than or equal to 10), vesicle concentration (0.05-32 mumol vesicle.dm-3, and ionic strength (0.005 less than or equal to J less than or equal to 0.25). Increasing the fatty acid concentration in PC bilayers causes the phase transition temperatures (at 4 less than or equal to pH less than or equal to 5) to rise until, for more than 2 FA molecules per PC molecule, the sample turbidity exhibits only two transitions corresponding to the chain-melting of the 1:2 stoichiometric complexes of PC/FA, and pure fatty acid. The former transition is into a nonlamellar phase and is accompanied by extremely rapid vesicle aggregation (with association rates on the order of Ca approximately 10(7) dm3.mol-1.s-1) and massive lipid precipitation. Fluid-phase vesicles with less than 2 FA per PC associate much more slowly (Ca approximately 10(3) dm3.mol-1.s-1), their aggregation being comparable to that of the ordered-phase liposomes. Under no conditions was the relation between the fatty acid concentration and the vesicle association rate for the fluid-phase vesicles linear. In contrast to the X-ray diffraction data, optical measurements reveal a 'pretransitional region' between the chain-melting temperature of the PC component and the temperature at which the gross transformation into a nonlamellar phase sets in. This is seen for all lipid mixtures investigated. On the relative temperature scale, lipids with different chain lengths behave qualitatively similarly; however, the effective association constants determined for samples of constant lipid concentration seem to decrease somewhat with the number of CH2 groups per chain. Fatty acid protonation, which yields electrically neutral bilayers, invariably increases the rate of vesicle association; we have measured, for example, Ca approximately 10(2) at pH approximately 7 and Ca approximately 10(7) dm3.mol-1.s-1 at pH approximately 4). Protonation of the phosphatidylcholine phosphate groups, which causes a net positive charge to accumulate on the lipid vesicles, initially increases (Ca approximately 10(8) dm3.mol-1.s-1) but ultimately decreases (Ca approximately 10(7) dm3.mol-1.s-1) the rate of association between PC/FA (1:2) mixed vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The addition of menadione or paraquat to rat liver microsomes resulted in about a threefold increase in the production of hydroxyl radical (.OH) as reflected by the increased oxidation of 2-keto-4-thiomethylbutyric acid (KMBA) to ethylene. This increase was not sensitive to superoxide dismutase but was blocked by catalase. The increase occurred in the absence of added iron and was not affected by the potent iron chelating agent, desferrioxamine, which suggests the possibility that .OH was produced from an interaction between H2O2 and the paraquat or menadione radical. Menadione and paraquat were especially effective in stimulating the oxidation of KMBA in the presence of certain iron chelates such as ferric-ADP, -ATP, or -EDTA, but not ferric-desferrioxamine, -citrate, or -histidine, or unchelated iron. In fact, ferric-ADP or -ATP only stimulated .OH production in the presence of menadione or paraquat. In the presence of ferric-EDTA, the greater than additive increase of .OH production was sensitive to catalase, but not to superoxide dismutase, suggesting the possibility of reduction of ferric-EDTA by paraquat or menadione radical. The interactions with ferric adenine nucleotides may increase the catalytic effectiveness of menadione or paraquat in producing potent oxidants such as the hydroxyl radical, and thus play a role in the toxicity associated with these agents. Paraquat and menadione had little effect on the overall oxidation of ethanol by microsomes. Microsomal drug metabolism was decreased by menadione or paraquat. As a consequence, the effect of these agents on the microsomal oxidation of ethanol was complex since it appeared that paraquat and menadione stimulated the oxidation of ethanol by a .OH-dependent mechanism, but inhibited the oxidation of ethanol by a cytochrome P-450-dependent oxidation pathway. Experiments with carbon monoxide, ferric-EDTA, and 2-butanol plus catalase tended to verify that microsomal oxidation of alcohols was increased by a .OH-dependent pathway when menadione or paraquat were added to microsomes.  相似文献   

9.
The effect of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid (OTCA), on certain aspects of the metabolism and toxicity of bromobenzene administered acutely to mice was investigated by (i) characterizing the influence of OTCA on the metabolic profile of low and high bromobenzene dose at 0-6, 6-12, and 12-24 h, (ii) determining the effective doses range and administration time for OTCA, as well as the optimum period for urine sampling; and (iii) measuring the efficacy of OTCA for protection against bromobenzene induced toxicity. Coadministration of OTCA and bromobenzene enhanced the urinary excretion of mercapturic acid and phenolic metabolites, during 6-12 h, by approximately 152 and 193%, respectively. Maximum efficacy was observed when OTCA (16.0 mmol/kg) was administered concomitantly with bromobenzene (4.0 mmol/kg). Finally, OTCA administration was found to afford substantial protection against elevation of plasma transaminases used as indices of bromobenzene-induced hepatotoxicity. N-acetylcysteine, another cysteine prodrug, had essentially similar effects on the metabolism and toxicity of bromobenzene. Thus, administration of cysteine prodrugs enhances the urinary excretion of several metabolites of bromobenzene and affords protection against bromobenzene-induced hepatotoxicity.  相似文献   

10.
Glutathione peroxidase (GSHPx), a seleno-enzyme, reduces lipid hydroperoxides while producing oxidized glutathione (GSSG), which can efflux from cells. To study the role of GSHPx in antioxidant defense, isolated lungs from selenium-deficient rats were perfused for 2 h with or without 1 mM paraquat. Perfusate GSSG was measured as an index of GSHPx activity, and malondialdehyde (MDA) as an index of lipid peroxidation. Selenium deficiency decreased lung GSHPx activity 75-80%. During perfusion control lungs showed GSSG efflux of 8.5 +/- 4.5 nmol/h and with paraquat 49.1 +/- 12.1 nmol/h. Selenium-deficient lungs with or without paraquat showed GSSG efflux of 16.4 +/- 5.3 and 13.7 +/- 8.9 nmol/h, respectively. MDA efflux occurred only in paraquat-perfused selenium-deficient lungs (7.8 +/- 2.7 nmol/h). Lung homogenates from this group had lower GSH + GSSG than the other three groups. These results indicate an inverse correlation between GSSG efflux and MDA accumulation from paraquat-perfused lungs and suggest that increased turnover of the GSHPx reaction protects paraquat-perfused lungs from lipid peroxidation.  相似文献   

11.
The effect of aminoguanidine (AG) against toxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice was investigated. A single dose of PQ (50 mg/kg, i.p.) induced lung-toxicity, manifested by significant decrease of the activity of angiotensin converting enzyme (ACE) in lung tissue indicating pulmonary capillary endothelial cell damage. Lung toxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content and significant increase in lipid peroxidation measured as malondialdehyde (MDA) in lung tissues. Oral pretreatment of mice with AG (50 mg/kg) in drinking water, starting 5 days before PQ injection and continuing during the experimental period, ameliorated the lung toxicity induced by PQ. This was evidenced by a significant increase in the levels of ACE activity, a significant decrease in lung MDA content and a significant increase in the total sulfhydryl content 24 h after PQ administration. Moreover, pretreatment of mice with AG leads to an increase of the LD(50) value of paraquat. These results indicate that AG is an efficient cytoprotective agent against PQ-induced lung toxicity.  相似文献   

12.
One of the most common bipyridinium herbicides that can lead to liver toxicity is paraquat. Rutin is a bioflavonoid with antioxidant, anti-inflammatory, anti-hepatotoxic, and antimicrobial properties. The effect of rutin on paraquat-induced liver toxicity was examined in this study. 48 male rats were divided into six groups: the control group was given a normal diet; the non-treated group was given paraquat; the positive control group was given paraquat, and silymarin and the treatment groups were given paraquat and rutin at doses of 25, 50, and 100 mg/kg. After fourteen days, the rats were anesthetized by xylazine-ketamine, and fasting blood samples were obtained from their hearts to measure alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT), malondialdehyde (MDA), creatinine, lipid profile, antioxidant capacity, and carbonyl protein. The liver tissue was removed to measure the levels of catalase (CAT), superoxide dismutase (SOD), total protein, vitamin C, plus NF-κB, IL1β, and caspase-3 gene expressions. Paraquat gavage in the untreated group (group 2) for 14 days in comparison with the control group induced a significant augmentation (p<0.05) in levels of lipid profile, AST, ALP, ALT, MDA, carbonyl protein, and also NF-κB, IL1β, Caspase3 expressions. Treatment with rutin reduced the factors as mentioned above. Paraquat poisoning induced a substantial decline (p<0.05) in HDL content, FRAP level, CAT, and SOD activity of the liver compared to the control group. However, rutin oral treatment led to a substantial increase (p<0.05) in the level of these factors compared to the paraquat-only treated group. Based on the findings of the present study, it was found that rutin can be significantly effective in improving hepatotoxicity caused by paraquat.  相似文献   

13.
This work aimed to study the relationship between the accumulation of cadmium (Cd) or aluminum (Al) in certain tissues and the levels of lipid peroxides as well as tissue antioxidants. To carry out such investigations, CdCl2 was given to rats in two dose levels; 0.5 or 2.0 mg/kg i.p for 1 day or daily repeated doses for 2 weeks. Al was given as AlCl3 either in a single dose of 100 mg/kg or daily repeated doses of 20 mg/kg for 2 and 4 weeks. The measured parameters were tissue malondialdehyde (MDA, index of lipid peroxidation) and reduced glutathione (GSH) levels as well as the activities of glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R), and glucose-6-phosphate dehydrogenase (G-6-PDH) enzymes. Liver and kidney functions were assessed by measuring serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities as well as serum urea and creatinine concentrations. Cd and Al concentrations in the studied tissues were also measured. Results indicated that tissue Cd was significantly increased after administration of either Cd doses. After a single dose of 0.5 or 2.0 mg/kg CdCl2, the increase in tissue Cd levels were accompanied by an increase in MDA and a decrease in GSH levels. On the other hand, after repeated administration of Cd, tissue Cd accumulation was accompanied by increased hepatic and renal GSH levels with decrease in MDA content and a decrease in GSH-PX activity in liver. Liver function was affected at all dose regimens, whereas kidney function was affected only after 2 weeks administration of the higher dose. In Al treated rats, Al concentration was shown to be increased in liver much more than in brain. This was accompanied by a slight decrease in hepatic GSH level after 2 weeks and a decrease in GSH-PX activity after 4 weeks. Liver function was affected only after repeated injection of Al for 2 or 4 weeks. In general, Al administration exhibited safer pattern than Cd.  相似文献   

14.
Erythrocytes are a convenient model to understand oxidative damage to the membranes induced by various xenobiotics. The objective of the present study was to investigate the propensity of atrazine to induce oxidative stress and its possible attenuation by vitamin E. Experimental animals were orally administered atrazine (300 mg kg(-1) body weight, daily) and vitamin E (100 mg kg(-1) body weight, daily) for a period of 7, 14, and 21 days. Erythrocyte membranes were prepared and analyzed for acetylcholinesterase (AChE) activity, lipid peroxidation (LPO), and lipid composition. Susceptibility of erythrocytes to atrazine exposure was further investigated in terms of morphological alterations by scanning electron microscopy (SEM). Results indicate that atrazine exposure caused a significant inhibition of AChE activity and induction of oxidative stress in terms of increased malondialdehyde (MDA) levels. Atrazine treatment significantly decreased total lipid, cholesterol, and phospholipid content of erythrocyte membranes. SEM revealed varying degrees of distortion depending on duration of atrazine exposure. However, administration of vitamin E ameliorated the oxidative stress and changes in the erythrocyte membranes induced by atrazine.  相似文献   

15.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine. It has antioxidant and antiproliferative activities, and has been shown to induce NAD(P)H:quinone oxidoreductase, also known as DT-diaphorase, in cultured mouse hepatoma cells. DT-diaphorase is a detoxifying enzyme for quinone-containing substances, due to its ability to prevent their one-electron reduction and the consequent generation of reactive oxygen species (ROS). The aim of the present study was to investigate whether oral administration of trans-resveratrol to guinea pigs (60 mg/l in tap water for 16 days, ad libitum) increases cardiac DT-diaphorase and, consequently, reduces the response of isolated atria to 2-methyl-1,4-naphthoquinone (menadione), the positive inotropic effect of which is related to the amount of ROS generated by its cardiac metabolism. In the cardiac tissue of resveratrol-treated animals, DT-diaphorase activity was significantly higher than that measured in control animals, the V(max) of the enzyme reaction being 75.47 +/- 3.87 and 50.73 +/- 0.63 nmoles/mg protein/min, respectively (p < 0.05). Resveratrol administration also significantly increased the activity of cardiac catalase (32.20 +/- 2.39 vs. 25.14 +/- 3.85 units/mg protein in treated and control animals, respectively; p < 0.001). As a consequence, menadione metabolism by the cardiac homogenate obtained from resveratrol-treated animals generated a smaller amount of ROS and, in electrically driven left atria, menadione produced a significantly lower increase in the force of contraction than in atria isolated from control animals. These results indicate that oral administration of resveratrol exerts cardioprotection against ROS-mediated menadione toxicity.  相似文献   

16.
We investigated the protective effects of L-carnitine on hippocampus tissue damage in rats during experimental formaldehyde (FA) intoxication. Male Wistar albino rats were assigned into four groups: (1) control (C), (??2) formaldehyde (FA), (3) formaldehyde + 0.5 g/kg of L-carnitine (FA + 0.5 LC) (4) formaldehyde + 1 g/kg L-carnitine (FA + 1 LC). At the end of the 14 day trial period, animals were sacrificed by decapitation under anesthesia. The hippocampus tissue samples were extracted to measure MDA, GSH and SOD activity. Neuronal degeneration was assessed based on histopathological (hematoxylin and eosin) and immunohistochemical (anti-ubiquitin) examination. To detect oxidative stress, specimens were reacted with anti-Cu/Zn-SOD antibody. After administering L-carnitine with FA to the animals, the activities of SOD and GSH increased, but the levels of MDA decreased in hippocampus tissue. Neuronal degeneration was observed in the FA group. L-carnitine administration reduced neuronal degeneration and histological structure was similar to controls. After FA application, degenerated hippocampus neurons were stained with anti-ubiquitin and Cu/Zn-SOD antibodies; weakly positive staining was observed in L- carnitine-treated groups. L-carnitine may be useful for preventing oxidative damage in the hippocampus tissue due to formaldehyde intoxication.  相似文献   

17.
Redox cycling agents such as paraquat and menadione increase the generation of reactive oxygen species in biological systems. The ability of NADPH and NADH to catalyze the generation of oxygen radicals from the metabolism of these redox cycling agents by rat liver nuclei was determined. The oxidation of hydroxyl radical scavenging agents by the nuclei was increased in the presence of menadione or paraquat, especially with NADPH as the reductant. Paraquat, even at high concentrations, was relatively ineffective with NADH. The highest rates of generation of .OH-like species occurred with ferric-EDTA as the iron catalyst. Certain ferric complexes such as ferric-ATP, ferric-citrate, or ferric ammonium sulfate, which were ineffective catalysts for .OH generation in the absence of paraquat or menadione, were reactive in the presence of the redox cycling agents. Oxidation of .OH scavengers was sensitive to catalase and competitive .OH-scavenging agents under all conditions. The redox cycling agents increased NADPH-dependent nuclear generation of H2O2; stimulation of H2O2 production may play a role in the increase in .OH generation by menadione and paraquat. Menadione inhibited nuclear lipid peroxidation, whereas paraquat and adriamycin were stimulatory. The nuclear lipid peroxidation with either NADPH or NADH plus the redox cycling agents was not sensitive to catalase or .OH scavengers. These results indicate that the interaction of rat liver nuclei with redox cycling agents and iron leads to the production of potent oxidants which initiate lipid peroxidation or oxidize .OH scavengers. Although NADPH is more effective, NADH can also participate in catalyzing the production of reactive oxygen intermediates from the interaction of quinone redox cycling agents with nuclei. The ability of redox cycling agents to interact with various ferric complexes to catalyze nuclear generation of potent oxidizing species with either NADPH or NADH as reductants may contribute to the oxidative stress, toxicity, and mutagenicity of these agents in biological systems.  相似文献   

18.
Abstract

The current literature reports that the circulation half-life of PEG-modified vesicles is independent of lipid dose over the range of β4-400 μmol/ kg. The results presented in this paper indicate that PEG-modified vesicles exhibit a dose-dependent circulation half-life at even lower lipid doses. At lipid doses of 2.13, 1.30, 0.50 and 0.16 μmol/kg, the half-life for the blood pool clearance of activity of technetium-99m encapsulated in PEG-coated vesicles was approximately 20, 16, 4, and 2 hr respectively. There was no statistically significant difference in clearance half-life for lipid doses of 2.13 and 1.30 μmol/kg (Kruskal-Wallis Anova, p>0.05). These results suggest that the dose-independent range may be extended down to approximately 1 (μmol/kg but that at lower doses, the circulation half-life is dependent on the lipid dose. These results are discussed in terms of the mechanism of clearance of activity from the circulation and the potential utility of PEG-modified technetium-99m labeled vesicles as blood pool imaging agents for nuclear medicine.  相似文献   

19.
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.  相似文献   

20.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号