首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews the organization of the forebrain nuclei of the avian song system. Particular emphasis is placed on recent physiologic recordings from awake behaving adult birds while they sing, call, and listen to broadcasts of acoustic stimuli. The neurons in the descending motor pathway (HVc and RA) are organized in a hierarchical arrangement of temporal units of song production, with HVc neurons representing syllables and RA neurons representing notes. The nuclei Uva and NIf, which are afferent to HVc, may help organize syllables into larger units of vocalization. HVc and RA are also active during production of all calls. The patterns of activity associated with calls differ between learned calls and those that are innately specified, and give insight into the interactions between the forebrain and midbrain during calling, as well as into the evolutionary origins of the song system. Neurons in Area X, the first part of the anterior forebrain pathway leading from HVc to RA, are also active during singing. Many HVc neurons are also auditory, exhibiting selectivity for learned acoustic parameters of the individual bird's own song (BOS). Similar auditory responses are also observed in RA and Area X in anesthetized birds. In contrast to HVc, however, auditory responses in RA are very weak or absent in awake birds under our experimental paradigm, but are uncovered when birds are anesthetized. Thus, the roles of both pathways beyond HVc in adult birds is under review. In particular, theories hypothesizing a role for the descending motor pathway (RA and below) in adult song perception do not appear to obtain. The data also suggest that the anterior forebrain pathway has a greater motor role than previously considered. We suggest that a major role of the anterior forebrain pathway is to resolve the timing mismatch between motor program readout and sensory feedback, thereby facilitating motor programming during birdsong learning. Pathways afferent to HVc may participate more in sensory acquisition and sensorimotor learning during song development than is commonly assumed. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 671–693, 1997  相似文献   

2.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   

3.
成年雄性鸣禽的习得性发声信号——长鸣(long call)和鸣唱(song)是由前脑高级发声中枢启动,以及由前脑最后一级输出核团弓状皮质栎核(robust nucleus of the arcopallium,RA)整合输出.RA投射神经元与位于中脑的基本发声中枢丘间复合体背内侧核(dorsomedial nucleus of the intercollicular,DM)形成突触连接.该文采用电损毁与声谱分析相结合的方法,通过依次损毁成年雄性斑胸草雀(Taeniopygia guttata)单侧RA和DM核团,探讨了前脑和中脑对习得性发声的影响.结果提示,RA核团与DM核团共同参与了对雄性斑胸草雀习得性声音的调控,而且这种控制具有右侧优势.  相似文献   

4.
A discrete neural circuit mediates the production of learned vocalizations in oscine songbirds. Although this circuit includes some bilateral pathways at midbrain and medullary levels, the forebrain components of the song control network are not directly connected across the midline. There have been no previous reports of bilateral projections from medullary and midbrain vocal control nuclei back to the forebrain song system, but the existence of such bilateral corollary discharge pathways was strongly suggested by the recent observation that unilateral stimulation of a forebrain song nucleus during singing leads to a rapid readjustment of premotor activity in the contralateral forebrain. In the present study, we used neuroanatomical tracers to demonstrate bilateral projections from (a) the rostral ventrolateral medulla (RVL), which may control respiratory aspects of vocalization, to nucleus uvaeformis (Uva), and (b) the dorsomedial intercollicular nucleus (DM), a midbrain vocal control region, to Uva. Both RVL and DM receive descending projections from the forebrain song nucleus robustus archistriatalis, and Uva projects directly to the forebrain song nuclei interfacialis and high vocal center. We suggest that the bilateral feedback projections from DM and RVL to Uva function to coordinate the two hemispheres during singing in adult songbirds and to convey internal feedback of premotor signals to the forebrain in young birds that are learning to sing. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 27–40, 1998  相似文献   

5.
Male zebra finches learn to imitate a tutor's song through auditory and motor learning. The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting neuroanatomical tracers, we found a topographically segregated pathway from nucleus ovoidalis (Ov) to VP that in turn projects in a topographic fashion to HVC and RA. Ov is a major relay in the main ascending auditory pathway. The results suggest that the cholinergic neurons in the VP responsible for song learning are regulated by auditory information from the Ov.  相似文献   

6.
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female‐directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR‐1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR‐1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR‐1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR‐1 expression in these areas. However, EGR‐1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context‐dependent changes could arise de novo in HVC. The pattern of context‐dependent differences in EGR‐1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 47–63, 2016  相似文献   

7.

Background

Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’.

Methodology/Principal Findings

To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously.

Conclusions/Significance

Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.  相似文献   

8.
Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other''s pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.  相似文献   

9.
Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable.  相似文献   

10.
Neurons in nuclei on the motor pathway for vocalizations in songbirds are known to responses in one such nucleus, robustus archistriatalis (RA), were characterized by making multi-unit recordings in awake and anesthetized adult male zebra finches and in birds that had received lesions of the input to RA from the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) or the Higher Vocal Center (HVC). In awake birds, RA neurons have a high level of spontaneous activity and vigorous auditory responses to song stimuli. Significantly greater responses are seen to the bird's own song (BOS) than to BOS played in reverse (REV) or to the songs of conspecifics (CON). Under ketamine-xylazine anesthesia, spontaneous activity is reduced, response latency increases and responses to BOS, REV and CON are indistinguishable. Responses obtained under urethane anesthesia are similar to those seen in awake birds. Thus, the pattern and selectivity of auditory responses in RA depend on the animal's state. Auditory responses in RA are qualitatively unchanged following lesion of the input to RA from LMAN, indicating that this pathway is not required for the sensory processing that underlies the preference for BOS on the vocal production pathway. Our results show that an input other than that from LMAN must be primarily responsible for auditory responses in RA. The direct projection form HVC is the most likely pathway by which song selective auditory information arrives in RA, since lesioning HVC abolished auditory responses in RA. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
The songs of adult male zebra finches (Taeniopygia guttata) arise by an integration of activity from two neural pathways that emanate from the telencephalic nucleus HVC (proper name). One pathway descends directly from HVC to the vocal premotor nucleus RA (the robust nucleus of the arcopallium) whereas a second pathway descends from HVC into a basal ganglia circuit (the anterior forebrain pathway, AFP) that also terminates in RA. Although HVC neurons that project directly to RA outnumber those that contribute to the AFP, both populations are distributed throughout HVC. Thus, partial ablation (microlesion) of HVC should damage both pathways in a proportional manner. We report here that bilateral HVC microlesions in adult male zebra finches produce an immediate loss of song stereotypy from which birds recover, in some cases within 3 days. The contribution of the AFP to the onset of song destabilization was tested by ablating the output nucleus of this circuit (LMAN, the lateral magnocellular nucleus of the anterior nidopallium) prior to bilateral HVC microlesions. Song stereotypy was largely unaffected. Together, our findings suggest that adult vocal production involves nonproportional integration of two streams of neural activity with opposing effects on song--HVC's direct projection to RA underlies production of stereotyped song whereas the AFP seems to facilitate vocal variation. However, the rapid recovery of song in birds with HVC microlesions alone suggests the presence of dynamic corrective mechanisms that favor vocal stereotypy.  相似文献   

12.
In songbirds the forebrain nuclei HVC (high vocal center) and RA (robust nucleus of the archistriatum) are larger in individuals or species that produce larger song repertoires, but the extent to which the size of these nuclei reflects a need for either producing or perceiving large repertoires is unknown. We, therefore, tested the hypothesis that species differences in the size of song nuclei reflect a commitment of “brain space” to the perceptual processing of conspecific song. The two species of marsh wren (Cistothorus palustris western and eastern) provide a good test case. Western males produce larger song repertoires, and have larger HVC and RA than do eastern males. Female marsh wrens do not sing, and if they use their song nuclei to assess conspecific male song repertoires, then we predicted that measurable cellular and nuclear parameters of HVC and RA would be greater in western than eastern female wrens. For males we confirmed that the volumes of HVC and RA, and cellular parameters of HVC, are greater in western than in eastern birds. These nuclei were also considerably larger in males than in conspecific females. Western and eastern female wrens, however, did not differ in any measured parameters of HVC or RA. Females of these wren species thus do not provide any direct evidence of anatomical specializations of song nuclei for the perceptual processing of conspecific male song. 1994 John Wiley & Sons, Inc.  相似文献   

13.
10种鸣禽控制鸣啭神经核团大小与鸣唱复杂性的相关性   总被引:8,自引:0,他引:8  
为进一步揭示鸣禽鸣唱行为的神经生物学机制 ,本实验先对 8个科 10种鸣禽的鸣唱行为进行了观察和录音 ,并借助声谱软件分析了每种鸣禽的鸣唱复杂性。鸣唱语句复杂性的评价指标包括 :短语总数、每个短语中所含的平均音节数及音节种类数、所有短语的总音节数及音节种类数、最长短语的音节数及音节种类数。然后 ,测定了前脑三个鸣啭学习控制核团和一个与发声无关的视觉参考核团体积 ,分析了鸣唱语句复杂性和这些核团大小间的相关关系。结果表明 :1)HVC和HVC/Rt与 7种鸣唱语句复杂性指标无关 ;RA和RA/Rt与总音节种类数相关 ;AreaX与总音节数及音节种类数相关 ;2 )HVC/RA和HVC/X比值与多个鸣唱语句复杂性指标相关。结果提示 :鸣禽鸣唱复杂性不同特征可能受不同神经控制  相似文献   

14.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway, AFP)在鸣唱学习中发挥着重要作用。新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum, LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium, RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为。LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性。文章对近年来LMAN在鸣唱学习可塑性方面的研究进行综述。  相似文献   

15.
Although vocal communication is wide-spread in animal kingdom, the use of learned (in contrast to innate) vocalization is very rare. We can find it only in few animal taxa: human, bats, whales and dolphins, elephants, parrots, hummingbirds, and songbirds. There are several parallels between human and songbird perception and production of vocal signals. Hence, many studies take interest in songbird singing for investigating the neural bases of learning and memory. Brain circuits controlling song learning and maintenance consist of two pathways — a vocal motor pathway responsible for production of learned vocalizations and anterior forebrain pathway responsible for learning and modifying the vocalizations. This review provides an overview of the song organization, its behavioural traits, and neural regulations. The recently expanding area of molecular mapping of the behaviour-driven gene expression in brain represents one of the modern approaches to the study the function of vocal and auditory areas for song learning and maintenance in birds.  相似文献   

16.
白腰文鸟发声行为的神经发育   总被引:5,自引:0,他引:5  
本文研究了 5~ 15 0日龄雄性白腰文鸟 (Lonchurastriataswinhoei)不同年龄段的声谱变化以及这种变化的神经调制机制。结果如下 :(1)HVC、RA和AreaX三个发声核团的神经联系基本接近成年鸟的水平后 ,幼鸟才开始学习鸣叫 (约 45日龄 ) ;(2 )HVC、RA和AreaX达到成年核团体积时 (约 80日龄 ) ,幼鸟才具有成年雄鸟的鸣叫模式 ;(3)发声控制核团的发育与核团间的神经支配有关 ,而基本不受鸣唱行为的影响 ,HVC、RA和AreaX的最快增长时间段各不相同 ,三个核团随年龄增长而呈现体积增长的显著变化 (one wayANOVA ,P <0 0 5 ) ,但各核团在任意两个时间段的体积差异并不都显著。结果提示 :发声行为产生的时间和发展与发声控制核团的发育、核团间的神经联系有关 ,最终的体积发育程度受内在遗传力的作用 ,同时可能还受神经核团建立正常神经联系时间的影响  相似文献   

17.
Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)—a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub‐song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213–1225, 2016  相似文献   

18.
In songbirds, there is considerable interest in relationships between song structure and the size of the song control system in the forebrain. In male canaries, earlier studies have reported that repertoire size increased with age, and positive correlations were obtained between repertoire size and the volume of song control nuclei such as high vocal center (HVC). Here we investigate whether age has an effect upon both the song structure and the morphology of two song control nuclei [HVC and robustus archistriatalis (RA)] that are important in song production. We recorded songs from an aviary population of 1- and 2-year-old male domesticated canaries. We found that repertoire size, number of sexually attractive (sexy) syllables, and size of song nuclei did not differ between 1- and 2-year-old males. Neither did we find significant correlations between syllable repertoire size and the size of the song control nuclei. However, HVC size was positively correlated with the proportion of sexy syllables in the repertoires of 2-year-old males. Some older males may enhance vocal performance by modifying the control of syllables rather than by increasing repertoire size or neural space.  相似文献   

19.
Black‐capped chickadees have a rich vocal repertoire including learned calls and the learned fee‐bee song. However, the neural regions underlying these vocalizations, such as HVC, area X, and RA (robust nucleus of arcopallium), remain understudied. Here, we document seasonal changes in fee‐bee song production and show a marked peak in singing rate during March through May. Despite this, we found only minimal seasonal plasticity in vocal control regions of the brain in males. There was no significant effect of time of year on the size of HVC, X, or RA in birds collected in January, April, July, and October. We then pooled birds into two groups, those with large testes (breeding condition) and those with small testes (nonbreeding), regardless of time of year. Breeding birds had slightly larger RA, but not HVC or X, than nonbreeding birds. Breeding birds had slightly larger HVC and RA, but not X, as a proportion of telencephalon volume than did nonbreeding birds. Birds collected in July had heavier brains than birds at other times of year, and had the greatest loss in brain mass during cryoprotection. The absence of any overall seasonal change in the vocal‐control regions of chickadees likely results from a combination of individual differences in the timing of breeding phenology and demands on the vocal‐control regions to produce learned calls year‐round. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
Black-capped chickadees have a rich vocal repertoire including learned calls and the learned fee-bee song. However, the neural regions underlying these vocalizations, such as HVC, area X, and RA (robust nucleus of arcopallium), remain understudied. Here, we document seasonal changes in fee-bee song production and show a marked peak in singing rate during March through May. Despite this, we found only minimal seasonal plasticity in vocal control regions of the brain in males. There was no significant effect of time of year on the size of HVC, X, or RA in birds collected in January, April, July, and October. We then pooled birds into two groups, those with large testes (breeding condition) and those with small testes (nonbreeding), regardless of time of year. Breeding birds had slightly larger RA, but not HVC or X, than nonbreeding birds. Breeding birds had slightly larger HVC and RA, but not X, as a proportion of telencephalon volume than did nonbreeding birds. Birds collected in July had heavier brains than birds at other times of year, and had the greatest loss in brain mass during cryoprotection. The absence of any overall seasonal change in the vocal-control regions of chickadees likely results from a combination of individual differences in the timing of breeding phenology and demands on the vocal-control regions to produce learned calls year-round.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号