首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ishima R  Louis JM 《Proteins》2008,70(4):1408-1415
Internal motion in proteins fulfills a multitude of roles in biological processes. NMR spectroscopy has been applied to elucidate protein dynamics at the atomic level, albeit at a low resolution, and is often complemented by molecular dynamics simulation. However, it is critical to justify the consistency between simulation results and conclusions often drawn from multiple experiments in which uncertainties arising from assumed motional models may not be explicitly evaluated. To understand the role of the flaps of HIV-1 protease dimer in substrate recognition and protease function, many molecular dynamics simulations have been performed. The simulations have resulted in various proposed models of the flap dynamics, some of which are more consistent than others with our working model previously derived from experiments. However, using the working model to discriminate among the simulation results is not straightforward because the working model was derived from a combination of NMR experiments and crystal structure data. In this study, we use the NMR chemical shifts and relaxation data of the protease "monomer" rather than structural data to narrow down the possible conformations of the flaps of the "dimer". For the first time, we show that the tips of the flaps in the unliganded protease dimer interact with each other in solution. Accordingly, we discuss the consistency of the simulations with the model derived from all experimental data.  相似文献   

3.
Molecular dynamics simulations have been carried out based on the GROMOS force field on the aspartyl protease (PR) of the human immunodeficiency virus HIV-1. The principal simulation treats the HIV-1 PR dimer and 6990 water molecules in a hexagonal prism cell under periodic boundary conditions and was carried out for a trajectory of 100 psec. Corresponding in vacuo simulations, i.e., treating the isolated protein without solvent, were carried out to study the influence of solvent on the simulation. The results indicate that including waters explicitly in the simulation results in a model considerably closer to the crystal structure than when solvent is neglected. Detailed conformational and helicoidal analysis was performed on the solvated form to determine the exact nature of the dynamical model and the exact points of agreement and disagreement with the crystal structure. The calculated dynamical model was further elucidated by means of studies of the time evolution of the cross-correlation coefficients for atomic displacements of the atoms comprising the protein backbone. The cross-correlation analysis revealed significant aspects of structure originating uniquely in the dynamical motions of the molecule. In particular, an unanticipated through-space, domain-domain correlation was found between the mobile flap region covering the active site and a remote regions of the structure, which collectively act somewhat like a molecular cantilever. The significance of these results is discussed with respect to the inactivation of the protease by site-specific mutagenesis, and in the design of inhibitors.  相似文献   

4.
Lexa KW  Carlson HA 《Proteins》2011,79(7):2282-2290
A recent crystal structure of HIV-1 protease (HIVp) was the first to experimentally observe a ligand targeting an open-flap conformation. Researchers studying a symmetric pyrrolidine inhibitor found that two ligands cocrystallized with the protease, forcing an unusual configuration and unique crystallographic contacts. One molecule is centered in the traditional binding site (α pose) and the other binds between the flaps (β pose). The ligands stack against each other in a region termed the "eye" site. Ligands bound to the eye site should prevent flap closure, but it is unclear if the pyrrolidine inhibitors or the crystal packing are causing the open state. Molecular dynamics simulations were used to examine the solution-state behavior of three possible binding modes: the ternary complex of HIVp+αβ and the binary complexes, HIVp+α and HIVp+β. We show that HIVp+α is the most stable of the three states. During conformational sampling, α takes an asymmetric binding pose, with one naphthyl ring occupying the eye site and the other reoriented down to occupy positions seen with traditional inhibitors. This finding supports previous studies that reveal a requirement for asymmetric binding at the eye site. In fact, if the α pose is modified to splay both naphthyl rings across the binding site like traditional inhibitors, one ring consistently flips to occupy the eye site. Our simulations reveal that interactions to the eye site encourage a conformationally restrained state, and understanding those contacts may aid the design of ligands to specifically target alternate conformations of the protease.  相似文献   

5.
Yan MC  Sha Y  Wang J  Xiong XQ  Ren JH  Cheng MS 《Proteins》2008,70(3):731-738
HIV-1 protease (HIV-PR) consists of two identical subunits that are united together through a four-stranded antiparallel beta-sheet formed of the peptide termini of each monomer. Since the active site exists only in the dimer, a strategy that is attracting more and more attention in inhibitor design and which may overcome the serious drug resistance caused by competitive inhibitors is to block the peptide termini of the monomer, thereby interfering with formation of the active dimer. In the present work, we performed several extensive molecular dynamics (MD) simulations of the HIV-PR monomer in water to illustrate its solvated conformation and dynamics behavior. We found that the peptide termini usually assembled into beta-sheet after several nanoseconds' simulation, and became much less flexible. This beta-sheet is stabilized by intramolecular interactions and is not easily disaggregated under the present MD simulation conditions. This transformation may be an important transition during the relaxing and equilibrating of the HIV-PR monomer in aqueous solution, and the terminal beta-sheet may be one of the major conformations of the solvated HIV-PR monomer termini in water. This work may provide new insights into the dynamics behavior and dimerization mechanism of HIV-PR, and more significantly, offer a more rational receptor model for the design and discovery of novel dimerization inhibitors than crystalline structures.  相似文献   

6.
The 1TW7 crystal structure of HIV-1 protease shows the flaps placed wider and more open than what is seen in other examples of the semi-open, apo form. It has been proposed that this might be experimental evidence of allosteric control, because crystal packing creates contacts to the "elbow region" of the protease, which may cause deformation of the flaps. Recent dynamics simulations have shown that the conformation seen in 1TW7 relaxes into the typical semi-open conformation in the absence of the crystal contacts, definitively showing that the crystal contacts cause the deformation (Layten et al., J Am Chem Soc 2006;128:13360-13361). However, this does not prove or disprove allosteric modulation at the elbow. In this study, we have conducted additional simulations, supplemented with experimental testing, to further probe the possibility of 1TW7 providing an example of allosteric control of the flap region. We show that the contacts are unstable and do not restrict the conformational sampling of the flaps. The deformation seen in the 1TW7 crystal structure is simply opportunistic crystal packing and not allosteric control.  相似文献   

7.
The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure.  相似文献   

8.
Docking ligands into an ensemble of NMR conformers is essential to structure-based drug discovery if only NMR structures are available for the target. However, sequentially docking ligands into each NMR conformer through standard single-receptor-structure docking, referred to as sequential docking, is computationally expensive for large-scale database screening because of the large number of NMR conformers involved. Recently, we developed an efficient ensemble docking algorithm to consider protein structural variations in ligand binding. The algorithm simultaneously docks ligands into an ensemble of protein structures and achieves comparable performance to sequential docking without significant increase in computational time over single-structure docking. Here, we applied this algorithm to docking with NMR structures. The HIV-1 protease was used for validation in terms of docking accuracy and virtual screening. Ensemble docking of the NMR structures identified 91% of the known inhibitors under the criterion of RMSD < 2.0 A for the best-scored conformation, higher than the average success rate of single docking of individual crystal structures (66%). In the virtual screening test, on average, ensemble docking of the NMR structures obtained higher enrichments than single-structure docking of the crystal structures. In contrast, docking of either the NMR minimized average structure or a single NMR conformer performed less satisfactorily on both binding mode prediction and virtual screening, indicating that a single NMR structure may not be suitable for docking calculations. The success of ensemble docking of the NMR structures suggests an efficient alternative method for standard single docking of crystal structures and for considering protein flexibility.  相似文献   

9.
A G Anderson  J Hermans 《Proteins》1988,3(4):262-265
A direct attack on the protein-folding problem has been initiated with the free energy perturbation methods of molecular dynamics. The complete conformational probability map for the alanine dipeptide is presented. This work uses the SPC model for the explicit hydration of the dipeptide. Free energy differences for the four observed minima (beta, alpha R, alpha L, C7ax) are given, and the free energy barriers between minima are outlined.  相似文献   

10.
To test the anticorrelated relationship that was recently displayed in conventional molecular dynamics (MD) simulations, several different restrained MD simulations on a wild type and on the V82F/I84V drug-resistant mutant of HIV-1 protease were performed. This anticorrelated relationship refers to the observation that compression of the peripheral ear-to-cheek region of HIV protease (i.e., the elbow of the flap to the fulcrum and the cantilever) occurred as the active site flaps were opening, and, conversely, expansion of that ear-to-cheek region occurred as both flaps were closing. An additional examination of this anticorrelated relationship was necessary to determine whether it can be harnessed in a useful manner. Consequently, six different MD experiments were performed that incorporated pairwise distance restraints in that ear-to-cheek region (i.e., the distance between the alpha-carbons of Gly40 and Gln61 was restrained to either 7.7 or 10.5 A, in both monomers). Pushing the backbones of the ear and the cheek regions away from each other slightly did force the flaps that guard the active site to remain closed in both the wild type and the mutant systems-even though there were no ligands in the active sites. Thus, these restrained MD simulations provided evidence that the anticorrelated relationship can be exploited to affect the dynamic behavior of the flaps that guard the active site of HIV-1 protease. These simulations supported our hypothesis of the mechanism governing flap motion, and they are the first step towards validating that peripheral surface as a new target for drug design.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a member of the PTP superfamily which is considered to be a negative regulator of insulin receptor (IR) signaling pathway. PTP1B is a promising drug target for the treatment of type 2 diabetes, obesity, and cancer. The existence of allosteric site in PTP1B has turned the researcher’s attention to an alternate strategy for inhibition of this enzyme. Herein, the molecular interactions between the allosteric site of PTP1B with three non-competitive flavonoids, (MOR), (MOK), and (DPO) have been investigated. Three ligands were docked into allosteric site of the enzyme. The resulting protein–ligand complexes were used for molecular dynamics studies. Principal component and free-energy landscape (FEL) as well as cluster analyses were used to investigate the conformational and dynamical properties of the protein and identify representative enzyme substrates bounded to the inhibitors. Per residue energy decomposition analysis attributed dissimilar affinities of three inhibitors to the several hydrogen bonds and non-bonded interactions. In conclusion, our results exhibited an inhibitory pattern of the ligands against PTP1B.  相似文献   

12.
13.
Abstract

The glycoproteins on the surface of human immunodeficiency virus (HIV) undergoes cascade of conformational transitions to evade the human immune system. The virus replicates inside the host and infects the T-cells instigating acquired immunodeficiency syndrome (AIDS). The glycoprotein 41 (gp41) of HIV helps to mediate the fusion of virus and host membranes. The detailed mechanism of host cell invasion by virus remains obscure due to the unavailability of experimental structure of complete gp41. In the current study, the post-fusion (PoF) trimeric structure of ecto-domain including transmembrane domain of gp41 was modeled using multiple homologous templates of Simian immunodeficiency virus (SIV) and HIV-1. In order to validate the gp41 model, interactions of three peptide inhibitors: T20, C37 and C34; were studied using all-atom molecular dynamics (MD) simulations, binding free-energy calculation and per-residue energy decomposition analysis. The binding free energy calculated using MM-PBSA (Molecular Mechanics Poisson-Boltzmann surface area) method predicts maximum affinity for C34 and minimum by T20 for gp41, which is in good agreement with the available computational and experimental studies. The van der Waals interaction is a dominant contributor for the peptide-gp41 complexes. The per-residue decomposition of energy confirmed the role of Trp117, Trp120 and Ile124, present in C34 and C37, for the strong hydrophobic interactions with the deep pocket localized around the N-terminal of gp41, which is lacking in T20. The HIV-1 gp41 structure developed in this work can be used in future study to gain insight into the mechanism of virus invasion and probing potent inhibitor to eliminate AIDS.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
15.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

16.
Janosi L  Keer H  Cogdell RJ  Ritz T  Kosztin I 《Proteins》2011,79(7):2306-2315
Most of the currently known light‐harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like “what factors govern the LH2 ring size?” and “are there other ring sizes possible?” remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8‐ring from Rs. moliscianum (MOLI) and a 9‐ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8‐, 9‐, and 10‐ring geometries. After inserting each of the dimers into a lipid‐water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9‐ring, while MOLI is more likely to form an 8‐ring than a 9‐ring. Finally, we discuss both the merits and limitations of all three prediction methods. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

17.
We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and (2) they help the user understand how different energy terms interact to stabilize a given conformation. The Sculpt paradigm combines many of the best features of interactive graphical modeling, energy minimization, and actual physical models, and we propose it as an especially productive way to use current and future increases in computer speed.  相似文献   

18.
This study reports the building of the three-dimensional structure of the rat alpha1d-adrenergic receptor through a topology approach based on the structure of the rhodopsin receptor from cryoelectron microscopy. The validity and reliability of the receptor model were assessed through exhaustive molecular dynamics and docking studies. Some interesting ligand-receptor interactions were identified along with significant differences between the binding mode of agonists and antagonists. The importance of the disruption of a salt bridge as a possible initial event leading to receptor activation is discussed on the basis of data from mutagenesis and molecular dynamics studies.  相似文献   

19.
20.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号