首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
During development of the avian neuromuscular system, lumbar spinal motoneurons (MNs) innervate their muscle targets in the hindlimb coincident with the onset and progression of MN programmed cell death (PCD). Paralysis (activity blockade) of embryos during this period rescues large numbers of MNs from PCD. Because activity blockade also results in enhanced axonal branching and increased numbers of neuromuscular synapses, it has been postulated that following activity blockade, increased numbers of MNs can gain access to muscle-derived trophic agents that prevent PCD. An assumption of the access hypothesis of MN PCD is the presence of an activity-dependent, muscle-derived sprouting or branching agent. Several previous studies of sprouting in the rodent neuromuscular system indicate that insulin-like growth factors (IGFs) are candidates for such a sprouting factor. Accordingly, in the present study we have begun to test whether the IGFs may play a similar role in the developing avian neuromuscular system. Evidence in support of this idea includes the following: (a) IGFs promote MN survival in vivo but not in vitro; (b) neutralizing antibodies against IGFs reduce MN survival in vivo; (c) both in vitro and in vivo, IGFs increase neurite growth, branching, and synapse formation; (d) activity blockade increases the expression of IGF-1 and IGF-2 mRNA in skeletal muscles in vivo; (e) in vivo treatment of paralyzed embryos with IGF binding proteins (IGF-BPs) that interfere with the actions of endogenous IGFs reduce MN survival, axon branching, and synapse formation; (f) treatment of control embryos in vivo with IGF-BPs also reduces synapse formation; and (g) treatment with IGF-1 prior to the major period of cell death (i.e., on embryonic day 6) increases subsequent synapse formation and MN survival and potentiates the survival-promoting actions of brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) administered during the subsequent 4- to 5-day period of PCD. Collectively, these data provide new evidence consistent with the role of the IGFs as activity-dependent, muscle-derived agents that play a role in regulating MN survival in the avian embryo. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 379–394, 1998  相似文献   

3.
In an attempt to determine whether the rescue of developing motoneurons (MNS) from programmed cell death (PCD) in the chick embryo following reductions in neuromuscular function involves muscle or neuronal nicotinic acetylcholine receptors (nAChRs), we have employed a novel cone snail toxin alphaA-OIVA that acts selectively to antagonize the embryonic/fetal form of muscle nAChRs. The results demonstrate that alphaA-OIVA is nearly as effective as curare or alpha-bungarotoxin (alpha-BTX) in reducing neuromuscular function and is equally effective in increasing MN survival and intramuscular axon branching. Together with previous reports, we also provide evidence consistent with a transition between the embryonic/fetal form to the adult form of muscle nAChRs in chicken that involves the loss of the gamma subunit in the adult receptor. We conclude that selective inhibition of the embryonic/fetal form of the chicken muscle nAChR is sufficient to rescue MNs from PCD without any involvement of neuronal nAChRs.  相似文献   

4.
Spinal motoneurons that normally die during early development can be rescued by a variety of purified growth or neurotrophic factors and target tissue extracts. There is also indirect evidence that brain or supraspinal afferent input may influence lumbar motoneuron survival during development and that this effect may be mediated by central nervous system–derived trophic agents. This report examines the biological and biochemical properties of motoneuron survival activity obtained from extracts of the embryonic chick brain. Treatment with an ammonium sulfate (25% to 75%) fraction of embryonic day 16 (E16) or E10 brain extracts rescued many spinal motoneurons that otherwise die during the normal period of cell death in vivo (E6 to E10). The same fractions also enhanced lumbar motoneuron survival following deafferentation. There were both similarities and differences between the active fractions derived from brain extracts (BEX) when compared with extracts derived from target muscles (MEX) or with purified neurotrophic factors. Survival activity from E10 BEX was as effective in promoting motoneuron survival as E10 MEX and more effective than astrocyte-conditioned media. Unlike MEX, the active fractions from BEX also rescued placode-derived nodose ganglion cells. In addition, unlike nerve growth factor and brain-derived neurotrophic factor, active BEX fractions did not rescue neural crest-derived dorsal root ganglion cells or sympathetic ganglion neurons. Interestingly, among many cranial motor and other brainstem nuclei examined, only the survival of motoneurons from the abducens nucleus was enhanced by BEX. Active proteins obtained from BEX were further separated by gel filtration chromatography and by preparative isolelectric focusing techniques. Activity was recovered in a basic (pI8) and an acidic (pI5) small molecular weight protein fraction (20 kD or less). The specific activity of the basic fraction was increased ×66 when compared with the specific activity of crude BEX, and the basic fraction had a slightly higher specific activity than the acidic fraction. The biological and biochemical properties of these fractions are discussed in the context of known neurotrophic factors and their effects on normal and lesion-induced motoneuron death during development. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

6.
In order to examine the role of target cells in the development of spinal motoneurons, the neural tube from thoracic segments was transplanted to the lumbar region on embryonic day (E) 2, and allowed to innervate hindlimb muscles in the chick embryo. When examined at later stages of development, the proportion of white and gray matter in the thoracic transplant was altered to resemble normal lumbar cord. Many thoracic motoneurons were able to survive up to posthatching stages following transplantation. The branching and arborization of dendrites of thoracic motoneurons innervating hindlimb muscles, as well as motoneuron (soma) size, were also increased to an extent approximating that seen in normal lumbar motoneurons. In support of previous studies using a similar transplant model, we have also found that the peripheral (intramuscular) branching pattern of thoracic motoneuron axons innervating hindlimb muscles was similar to that of normal lumbar motoneurons. Axon size and the degree of myelination of transplanted thoracic motoneuron axons were also increased so that these parameters more closely resembled axons of normal lumbar than normal thoracic spinal motoneurons. Virtually all of the changes in motoneuron properties noted above were observed irrespective of whether or not the transplanted spinal cord had developed in anatomical continuity with the host rostral cord. Accordingly, it is unlikely that the changes in the development of transplanted thoracic motoneurons reported here are induced either entirely, or in part, by signals derived from the host central nervous system. Rather, these changes appear to be mediated by interactions between the transplanted motoneurons and the hindlimb. We favor the notion that retrograde trophic signals derived from the hindlimb act to modulate the development of innervating motoneurons. Whether this signal involves a diffusible trophic agent released from target cells, or acts by some other mechanism is presently unknown. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR‐1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino‐terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR‐1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR‐1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target‐derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombin‐induced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line–derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle‐derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by α‐thrombin. Yet, non–muscle‐derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin‐induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin‐induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin‐induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin‐induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 571–580, 1999  相似文献   

8.
The present review covers all the published data on neuron death in the developing avian isthmo–optic nucleus (ION), which provides a particularly convenient situation for studying the causes and consequences of neuron death in the development of the vertebrate central nervous system. The main conclusions are as follows: The naturally occurring neuron death in the ION is related both temporally and causally to the ION's formation of afferent and efferent connections. The ION neurons need to obtain both anterograde and retrograde survival signals in order to survive during a critical period in embryogenesis. They may compete, at least for the retrograde signals, but the nature of the competition is still unclear. The retrograde signals are modified by action potentials. Neurons dying from a lack of anterograde survival signals can be distinguished morphologically from ones dying from a lack of retrograde signals. The neuron death refines circuitry by selectively eliminating neurons with “aberrant” axons projecting to the “wrong” (i.e., ipsilateral) retina or to the “wrong” (topographically inappropriate) part of the contralateral retina. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

10.
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
We have examined c‐Jun protein expression by immunocytochemistry in normal and pathologically induced cell death by focusing primarily on the developing neuromuscular system of the chick embryo. Several commercially available antibodies against c‐Jun were used in combination with the TUNEL technique or propidium iodide staining for detection of cells undergoing programmed cell death (PCD). Among these, a rabbit polyclonal antibody raised against the amino acids 91‐105 mapping to the amino terminal domain of mouse c‐Jun p39 (c‐Jun/sc45) transiently immunostained the cytoplasm of dying spinal cord motoneurons at a time coincident with naturally occurring motoneuron death. Late apoptotic bodies were devoid of c‐Jun/sc45 immunoreactivity. A monoclonal antibody directed against a region corresponding to the amino acids 26‐175 of c‐Jun p39 (c‐Jun/mAB) did not specifically immunostain dying neurons, but, rather, showed nuclear immunolabeling in almost all healthy motoneurons. Experimentally induced programmed death of motoneurons by means of early limb bud ablation, axotomy, or in ovo injection of the neurotoxin β‐bungarotoxin increased the number of dying cells showing positive c‐Jun/sc45 immunoreactivity. Immunoelectron microscopy with c‐Jun/sc45 antibody showed that the signal was present in the cytoplasm without a specific association with organelles, and was also present in large lysosome‐like dense bodies inside neuritic profiles. Similar findings were obtained in different types of cells undergoing normal or experimentally induced PCD. These include dorsal root ganglion neurons, Schwann cells, muscle cells, neural tube and neural crest cells during the earliest stages of spinal cord development, and interdigital mesenchymal cells of hindlimbs. In all these cases, cells showed morphological and histochemical characteristics of apoptotic‐like PCD. By contrast, motoneurons undergoing necrotic cell death induced by the excitotoxin N‐methyl‐D ‐aspartate did not show detectable c‐Jun/sc45 immunoreactivity, although they displayed an increase in nuclear c‐Jun/mAB immunostaining. In Western blot analysis of spinal cord extracts, c‐Jun/sc45 antibody weakly detected a 39‐kD band, corresponding to c‐Jun, and more strongly detected two additional bands of 66 and 45 kD which followed developmental changes coincident with naturally occurring or experimentally stimulated apoptotic motoneuron death. By contrast, c‐Jun/mAB only recognized a single p39 band as expected for c‐Jun, and did not display changes associated with neuronal apoptosis. From these data, we conclude that the c‐Jun/sc45 antibody recognizes apoptosis‐related proteins associated with the early stages of morphological PCD in a variety of neuronal and nonneuronal cells, and that c‐Jun/sc45 is a reliable marker for a variety of developing cells undergoing programmed cell death. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 171–190, 1999  相似文献   

12.
Smooth muscle cells (SMC) make up most of the vascular system. In advanced atherosclerotic plaques, dying SMCs undergo a complex death mode. In the present study, we examined the activation of autophagy in SMCs overloaded with excess free cholesterol (FC) and investigated the possible role which autophagy plays during the FC-induced cell death. After incubation with excess FC, a robust expression of autophagic vacuoles (AV) was detected using both fluorescence microscopy and transmission electron microscopy (TEM). The results revealed that FC induced a time-dependent upregulation of microtubule-associated protein-1 light chain 3-II (LC3-II). Inhibition of autophagy by 3-methyladenine (3-MA) enhanced both cell apoptosis and necrosis, while on the contrary, rapamycin inhibited cell death following cholesterol application. Furthermore, the impact of the colocalization of fragmented mitochondria with AVs was observed after cholesterol treatment. Our results also revealed that the modulation of autophagy directly influenced the cellular organellar stress. In conclusion, our findings demonstrated that excess FC induced the activation of autophagy in SMCs as a cellular defense mechanism, possibly through the degradation of dysfunctional organelles such as mitochondria and endoplasmic reticulum.  相似文献   

13.
Although hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain, their effects and mechanism of action under pathological conditions remain to be determined. Over-activation of the N-methyl-d-aspartate (NMDA) receptor, an ionotropic glutamate receptor, has been implicated in a variety of neurological and neurodegenerative disorders. We investigated the effects of HGF on the NMDA-induced cell death in cultured hippocampal neurons and sought to explore their mechanisms. NMDA-induced cell death and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were prevented by HGF treatment. Although neither the total amounts nor the mitochondrial localization of Bax, Bcl-2 and Bcl-xL were affected, caspase 3 activity was increased after NMDA exposure. Treatment with HGF partially prevented this NMDA-induced activation of caspase 3. Although the amount of apoptosis-inducing factor (AIF) was not altered, translocation of AIF into the nucleus was detected after NMDA exposure. This NMDA-induced AIF translocation was reduced by treatment with HGF. In addition, increased poly(ADP-ribose) polymer formation after NMDA exposure was attenuated by treatment with HGF. These results suggest that the protective effects of HGF against NMDA-induced neurotoxicity are mediated via the partial prevention of caspase 3 activity and the inhibition of AIF translocation to the nucleus.  相似文献   

14.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

15.
Close correlation between tissue transglutaminase (tTG) induction and growth regulation and/or cell death processes has been suggested in many cell lineages. In this study, the regulation of the tTG levels by various growth and differentiation factors and its relation to growth rate and cell death processes were investigated in two rat hepatoma cell lines, McA-RH7777 and McA-RH8994, using a monoclonal antibody against liver tTG. Transforming growth factor-β1 (TGF-β1) and retinoic acid (RA) each increased tTG to the level of 8- to 32-fold above that of control cultures in both cell lines after 72-h treatment. Dexamethasone (DEX) induced a 16- to 32-fold of tTG in McA-RH8994 cells while it did not change the enzyme level in McA-RH7777 cells. Simultaneous addition of DEX and RA increased the tTG level to more than 50-fold in McA-RH7777 cells as well as McA-RH8994 cells. Other factors, such as TGF-α, hepatocyte growth factor, dimethyl sulfoxide, and protein kinase C activator, did not show significant increases of the tTG levels. Although tTG induction by TGF-β1 or DEX appeared to be correlated with their growth suppressive effects, RA increased the tTG level without suppressing the growth rate of hepatoma cells. TGF-β1 was also shown to induce cell death in both cell lines. Our results demonstrate that RA and DEX are capable of modulating the TGF-β1-induced cell death processes independent of the tTG levels. We present evidence here that tTG induction by itself is not the direct cause of growth suppression and cell death in these hepatoma cells.  相似文献   

16.
Nerve growth factor (NGF) is essential for the development and differentiation of sympathetic and sensory neurons. Recently, NGF receptors were demonstrated in non-neural cells, and several mesenchymal cell types including lymphocytes and skeletal myotubes were shown to be stimulated to proliferate by NGF. Our purpose was to examine for the presence of functional NGF receptors in osteoblasts. Bone cells from chick calvaria were used as a model; PC-12 cells derived from rat adrenal pheochromocytoma were used as positive controls. NGF was examined for functions in chick bone cells by studying effects on (1) [3H]-thymidine incorporation; (2) alkaline phosphatase (ALP) activity; and (3) protein tyrosine phosphorylation. Effects of NGF on thymidine incorporation and protein tyrosine phosphorylation by PC-12 cells were also measured. A radioreceptor assay was used to test for the presence of receptors. In chick calvarial cells, NGF had no effect on thymidine incorporation, ALP activity or protein tyrosine phosphorylation. Radioreceptor assay with bone cells showed no evidence of NGF receptors. In contrast, in PC-12 cells, NGF (1) decreased thymidine incorporation; (2) increased protein tyrosine phosphorylation; and (3) showed receptor activity by radioreceptor assay. In conclusion, unlike several other mesenchymal cell types, chick bone cells show no evidence of NGF receptors or functional responses to NGF in vitro.  相似文献   

17.
Elicitor-triggered transient membrane potential changes and Ca2+ influx through the plasma membrane are thought to be important during defense signaling in plants. However, the molecular bases for the Ca2+ influx and its regulation remain largely unknown. Here we tested effects of overexpression as well as retrotransposon (Tos17)-insertional mutagenesis of the rice two-pore channel 1 (OsTPC1), a putative voltage-gated Ca(2+)-permeable channel, on a proteinaceous fungal elicitor-induced defense responses in rice cells. The overexpressor showed enhanced sensitivity to the elicitor to induce oxidative burst, activation of a mitogen-activated protein kinase (MAPK), OsMPK2, as well as hypersensitive cell death. On the contrary, a series of defense responses including the cell death and activation of the MAPK were severely suppressed in the insertional mutant, which was complemented by overexpression of the wild-type gene. These results suggest that the putative Ca(2+)-permeable channel determines sensitivity to the elicitor and plays a role as a key regulator of elicitor-induced defense responses, activation of MAPK cascade and hypersensitive cell death.  相似文献   

18.
19.
Abstract Dorfin is a RING-finger type ubiquitin ligase for mutant superoxide dismutase 1 (SOD1) that enhances its degradation. Mutant SOD1s cause familial amyotrophic lateral sclerosis (FALS) through the gain of unelucidated toxic properties. We previously showed that the accumulation of mutant SOD1 in the mitochondria triggered the release of cytochrome c, followed by the activation of the caspase cascade and induction of neuronal cell death. In the present study, therefore, we investigated whether Dorfin can modulate the level of mutant SOD1 in the mitochondria and subsequent caspase activation. We showed that Dorfin significantly reduced the amount of mutant SOD1 in the mitochondria, the release of cytochrome c and the activation of the following caspase cascade, thereby preventing eventual neuronal cell death in a neuronal cell model of FALS. These results suggest that reducing the accumulation of mutant SOD1 in the mitochondria may be a new therapeutic strategy for mutant SOD1-associated FALS, and that Dorfin may play a significant role in this.  相似文献   

20.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号