首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We manipulated developmental time and dry weight at eclosion in 15 genotypes of Drosophila melanogaster by growing the larvae in 9 environments defined by 3 yeast concentrations at 3 temperatures. We observed how the genetic and various environmental components of phenotypic variation scaled with the mean values of the traits. Temperature, yeast, within-environmental factors and genotype influenced the genotypic and environmental standard deviations of the two traits in patterns that point to very different modes of physiological and developmental action of these factors. Since different factors affected the environmental and genetic components of the phenotypic variation either in parallel or inversely, we conclude that environmental heterogeneity may have small or large effects on evolutionary rates depending on which factors cause the heterogeneity. The analysis also suggests that the scaling of variances with the mean is not as trivial as is often assumed when coefficients of variation are computed to “standardize” variation.  相似文献   

2.
We estimated genetic and environmental variance components for developmental time and dry weight at eclosion in Drosophila melanogaster raised in ten different environments (all combinations of 22, 25 and 28 degrees C and 0.5, 1 and 4% yeast concentration, and 0.25% yeast at 25 degrees C). We used six homozygous lines derived from a natural population for complete diallel crosses in each environment. Additive genetic variances were consistently low for both traits (h2 around 10%). The additive genetic variance of developmental time was larger at lower yeast concentrations, but the heritability did not increase because other components were also larger. The additive genetic effects of the six parental lines changed ranks across environments, suggesting a mechanism for the maintenance of genetic variation in heterogenous environments. The variance due to non-directional dominance was small in most environments. However, there was directional dominance in the form of inbreeding depression for both traits. It was pronounced at high yeast levels and temperatures but disappeared when yeast or temperature were decreased. This meant that the heterozygous flies were more sensitive to environmental differences than homozygous flies. Because dominance effects are not heritable, this suggests that the evolution of plasticity can be constrained when dominance effects are important as a mechanism for plasticity.  相似文献   

3.
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance–covariance ( G ) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments.  相似文献   

4.
We have investigated the relationship between phenotypic and genetic correlations among a large number of quantitative traits (36) in three different environments in order to determine their degree of disparity and whether phenotypic correlations could be substituted for their genetic counterparts whatever the environment. We also studied the influence of the environment on genetic and phenotypic correlations. Twenty accessions (full-sib families) ofMedicago luPulina were grown in three environments. In two of these two levels of environmental stress were generated by harvesting plants at flowering and by growing plants in competition with barley, respectively. A third environment, with no treatment, was used as a control with no stress. Average values of pod and shoot weight indicate that competition induces the highest level of stress. The genetic and phenotypic correlations among the 36 traits were compared. Significant phenotypic correlations were obtained easily, while there was no genetic variation for 1 or the 2 characters being correlated. The large positive correlation between the genetic and phenotypic correlation matrices indicated a good proportionality between genetic and phenotypic correlations matrices but not their similarity. In a given environment, when only those traits with a significant genetic variance were taken into account, there were still differences between genetic and phenotypic correlations, even when levels of significance for phenotypic correlations were lowered. Consequently, it is dangerous to substitute phenotypic correlations for genetic correlations. The number of traits that showed genetic variability increased with increasing environmental stress, consequently the number of significant genetic correlations also increased with increasing environmental stress. In contrast, the number of significant phenotypic correlations was not influnced by the environment. The structures of both phenotypic and genetic matrices, however, depended on the environment, and not in the same way for both matrices.  相似文献   

5.
We determined reaction norms for developmental time and weight at eclosion for 2 isozygous and 11 genetically mixed strains of Drosophila mercatorum in four culture media differing in yeast concentration. With decreasing yeast concentration, development was delayed, the weight of emerging flies decreased, and the phenotypic variance of both variables increased. Differences among stocks and significant stock × yeast interactions indicated genetic variance for both variables within environment and different phenotypic responses of stocks across environments. The phenotypic correlation between developmental time and weight was negative at low yeast concentrations and disappeared gradually with increasing yeast. The comparison of completely homozygous with genetically heterogenous stocks showed that most of the increase of variability with deteriorating environment was due to the changing expression of genetic variance. The genetic correlation between developmental time and weight turned from negative in poor to positive in rich medium, while the environmental covariance was negative in all media. Plotting the reaction norms in the developmental time-weight plane rather than separately for each trait reveals most of these results at a glance. It also suggests that much of the genetic variance might be additive, because an effect of the half-sib family structure inherent in the design is clearly visible in the plot. We interpret the pattern of changing variances and covariances, pointing out that the special growth physiology of Drosophila and the way environmental factors affect it must be taken into account. We briefly discuss the implications of changing genetic correlations among traits for the evolution of phenotypic plasticity in general.  相似文献   

6.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

7.
Summary Spaced plants of a segregating soybean hybrid population in the F6 generation were scored for fourteen quantitative traits related to yield, foliage development and growth duration. Full-sib relationships were used to estimate the genetic additive components of variation and covariation. All genetic correlations between traits, as well as phenotypic and environmental correlations, were estimated separately. A principal component analysis was further performed in all three cases. Genetic correlations identified four different groups of traits comprised of: (I) seed number per pod; (II) mean seed weight; (III) dry weight and chlorophyll content per unit leaf area; (IV) all the other characters, including seed yield and total plant weight at maturity. Among these traits, stem diameter at ground level appeared to be a good indicator of yield. This distribution remained about the same for the environmental correlations, except that growth duration traits and foliage development traits became independent of yield. The implications of these results are discussed in relation to soybean breeding for climatic adaptation.  相似文献   

8.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

9.
Summary Body size in Drosophila is known to be closely related to a number of traits with important life history consequences, such as fecundity, dispersal ability and mating success. We examine the quantitative genetic basis of body size in three populations of the cactophilic species Drosophila buzzatii, which inhabit climatically different areas of Australia. Flies were reared individually to eliminate any common environmental component in a full-sib design with families split between two temperatures (18° and 25 °C). The means of several size measures differ significantly among populations while the genetic correlations among these traits generally do not differ, either among populations from different natural environments or between the different laboratory temperatures. This stability of correlation structure is necessary if laboratory estimates of genetic correlations are to have any connection with the expression of genetic variation in the field. The amount of variance due to genotype-by-environment interactions (family x temperature of development) varied among populations, apparently in parallel with the magnitudes of seasonal and diurnal variation in temperature experienced by the different populations. A coastal population, inhabiting a relatively thermally benign environment, showed no interaction, while two inland populations, inhabiting thermally more extreme areas, showed interaction. This interaction term is a measure of the amount of genetic variation in the degree of phenotypic plasticity of body size in response to temperature of development. Thus the inland flies vary in their ability to attain a given body size at a particular temperature while the coastal flies do not. This phenotypic plasticity is shown to be due primarily to differences among genotypes in the amount of response to the change in temperature. A possible selective basis for the maintenance of genetic variation for the levels of phenotypic plasticity is proposed.  相似文献   

10.
Field studies indicate that the influence of environmental factors on growth rate and size and age at maturity in sailfin mollies (Poecilia latipinna) is inconsistent over time and suggest that the marked interdemic variation in male body size in this species is the result of genetic variation. However, the role of specific environmental factors in generating phenotypic variation must be studied under controlled conditions unattainable in nature. We raised newborn sailfin mollies from four populations in laboratory aquaria under all possible combinations of two temperatures, three salinities, and two food levels to examine explicitly the influence of these environmental factors. Males were much less susceptible than females to temperature variation and were generally less plastic than females in terms of all three traits. Members of both sexes matured at larger sizes and at later ages in less saline and in cooler environments. Food levels were not sufficiently different to affect the traits we studied. The effects of temperature and salinity were not synergistic. Males from different populations exhibited different average ages and sizes at maturity, but females did not. The magnitudes of the effects we found were not substantial enough to account for the consistent interdemic differences in male and female body size that have been observed previously. Our results also indicate that no single environmental factor is solely responsible for the environmental effects observed in field experiments on growth and development. These studies, together with other work, indicate that the strongest sources of interdemic variation are genetic differences in males and differences in postmaturation growth and survivorship in females.  相似文献   

11.
Bubliy OA  Loeschcke V 《Genetica》2000,110(1):79-85
Variation of five quantitative traits (thorax length, wing length, sternopleural bristle number, developmental time and larva-to-adult viability) was studied in Drosophila melanogaster reared at standard (25°C) and high stressful (32°C) temperatures using half-sib analysis. In all traits, both phenotypic and environmental variances increased at 32°C. For genetic variances, only two statistically significant differences between temperature treatments were found: the among-sire variance of viability and the among-dam variance of developmental time were higher under stress. Among-sire genetic variances and evolvabilities were generally higher at 32°C but narrow sense heritabilities were not. The results of the present work considered in the context of other studies in D. melanogaster indicate different patterns of genetic variation between stressful and nonstressful environments for the traits examined. Data on thorax length and viability agree with the hypothesis that genetic variance can be increased under extreme environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Understanding adaptive phenotypic variation is one of the most fundamental problems in evolutionary biology. Genes involved in adaptation are most likely those that affect traits most intimately connected to fitness: life-history traits. The genetics of quantitative trait variation (including life histories) is still poorly understood, but several studies suggest that (1) quantitative variation might be the result of variation in gene expression, rather than protein evolution, and (2) natural variation in gene expression underlies adaptation. The next step in studying the genetics of adaptive phenotypic variation is therefore an analysis of naturally occuring covariation of global gene expression and a life-history trait. Here, we report a microarray study addressing the covariation in larval gene expression and adult body weight, a life-history trait involved in adaptation. Natural populations of Drosophila melanogaster show adaptive geographic variation in adult body size, with larger animals at higher latitudes. Conditions during larval development also affect adult size with larger flies emerging at lower temperatures. We found statistically significant differences in normalized larval gene expression between geographic populations at one temperature (genetic variation) and within geographic populations between temperatures (developmental plasticity). Moreover, larval gene expression correlated highly with adult weight, explaining 81% of its natural variation. Of the genes that show a correlation of gene expression with adult weight, most are involved in cell growth or cell maintenance or are associated with growth pathways.  相似文献   

13.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

14.
When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high‐ and low‐predation environments that were reared under native and non‐native environmental conditions. Both high‐ and low‐predation fish exhibited increased behavioural variance when reared under non‐native vs. native environmental conditions, and rearing in the non‐native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments.  相似文献   

15.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

16.
Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed significantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences reflect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.  相似文献   

17.
An integral assumption of many models of morphometric evolution is the equality of the genetic variance-covariance structure across evolutionary time. To examine this assumption, the quantitative-genetic aspects of morphometric form are examined for eight pelvic traits in laboratory rats (Rattus norvegicus) and random-bred ICR mice (Mus musculus). In both species, all traits are significantly heritable, and there are significant phenotypic and genetic correlations among traits, although environmental correlations among the eight traits are low. The size relations among the pelvic variables are isometric. Three matrix-permutation tests are used to examine similarity of phenotypic, genetic, and environmental covariance and correlation matrices within and between species. Independent patterns of morphometric covariation and correlation arise from genetic and environmental effects within each species and from environmental effects between species. The patterns of phenotypic and genetic covariation and correlation are similar within each species, and the phenotypic and genetic correlations are also similar between these species. However, genetic covariance matrices show no significant statistical association between species. It is suggested that the assumption of equality of genetic variance-covariance structures across divergent taxa should be approached with caution.  相似文献   

18.
Variation in local environments may lead to variation in the selection pressures and differentiation among local populations even at microgeographic scale. We investigated variation in temperature-induced plasticity in larval life-history traits among populations of an isolated pool frog (Rana lessonae) metapopulation in Central Sweden. Successful breeding of this northern fringe metapopulation is highly dependent on early summer temperature, however, the metapopulation shows very little variation in molecular genetic markers suggesting limited potential for local differentiation. We exposed larvae from three closely-located populations to two temperatures (20 and 25°C) in laboratory to investigate their growth and development responses to temperature variation. In general, larvae exposed to warmer temperature experienced higher survival and metamorphosed faster, but at a smaller size than those at low temperature. We found differences among the populations in both trait mean values and in the plastic responses. Among-family variation within populations was found in growth rate and time to metamorphosis, as well as in plasticity suggesting that these traits have a capacity to evolve. Our results indicate ample phenotypic variation within and among these closely-located populations despite the low molecular genetic variation. The differences in pond temperature characteristics detected in the study in the three localities may suggest that differential selection is acting in the populations. The strong differentiation found in the larval traits implies that understanding the factors that influence the potential of the populations to adapt to environmental changes may be essential for successful conservation strategies.  相似文献   

19.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

20.
Starvation resistance is an important trait related to survival in many species and often involves dramatic changes in physiology and homeostasis. The tropical African butterfly Bicyclus anynana lives in two seasonal environments and has evolved phenotypic plasticity. The contrasting demands of the favourable, wet season and the harsh, dry season have shaped a remarkable life history, which makes this species particularly interesting for investigating the relationship between starvation resistance, metabolism, and its environmental modulation. This study reports on two laboratory experiments to investigate the effects of pre-adult and adult temperatures that mimic the seasonal environments, on starvation resistance and resting metabolic rate (RMR) in adult B. anynana. In addition, we investigate starvation resistance in wet and dry seasonal form genotypes; artificial selection on eyespot size has yielded lines that only produce one or the other of the seasonal forms across all rearing environments. As expected, the results show a large effect of adult temperature. More relevant, we show here that both pre-adult temperature and genetic background also influence adult starvation resistance, showing that phenotypic plasticity in this species includes starvation resistance. The dry season form genotype has a higher starvation resistance when developed at dry season temperatures, indicating a genetic modulation of starvation resistance in relation to temperature. Paradoxically, dry season pre-adult temperatures reduce starvation resistance and raise RMR. The high overall association of RMR and starvation resistance in our experiments suggests that energy expenditure and survival are linked, but that they may counteract each other in their influence on fitness in the dry season. We hypothesize that metabolism is moderating a trade-off between pre-adult (larval) survival and adult survival in the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号