首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The gene zfh2 and its human homolog Atbf1 encode huge molecules with several homeo- and zinc finger domains. It has been reported that they play important roles in neural differentiation and promotion of apoptosis in several tissues of both humans and flies. In the Drosophila wing imaginal disc, Zfh2 is expressed in a dynamic pattern and previous results suggest that it is involved is proximal–distal patterning. In this report we go further in the analysis of the function of this gene in wing development, performing ectopic expression experiments and studying its effects in genes involved in wing development. Our results suggest that Zfh2 plays an important role controlling the expression of several wing genes and in the specification of those cellular properties that define the differences in cell proliferation between proximal and distal domains of the wing disc.  相似文献   

2.
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.  相似文献   

3.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment--the principal adult olfactory organ--derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system.  相似文献   

4.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment—the principal adult olfactory organ—derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
陈敏  唐文倩  沈杰  王丹 《昆虫知识》2016,(6):1402-1407
【目的】在昆虫基因表达和功能研究中,RNA原位杂交技术越来越受到青睐。该技术不仅能定性定量反应基因表达的时空特异性,而且能在细胞水平上检测基因表达的调控模式。为了将该技术更好地在昆虫小器官研究中运用,我们以果蝇幼虫翅芽为例优化了改技术。【方法】解剖果蝇3龄幼虫翅芽进行原位杂交实验。【结果】我们发现影响原位杂交结果的因素十分复杂,包括取材时期,探针的合成,预杂交/杂交的时间和温度,清洗时间,适当的对照等。通过RNA荧光原位杂交实验,我们揭示了调控细胞记忆的trithorax基因在3龄翅芽广泛表达,并且受到转录因子Optomotor-blind的负调控。【结论】这一技术方法为研究昆虫小器官的基因表达和调控提供了便捷手段。  相似文献   

6.
7.
Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes.  相似文献   

8.
9.
MicroRNAs (miRNAs) 是一类长度约为22 nt的内源性非编码小RNA. 它们在后生动物基因组中普遍存在,通过抑制靶基因mRNA的翻译或将其降解,在转录后水平调控基因的表达. 越来越多的证据表明,miRNAs在动物发育和人类疾病发生中发挥重要作用. miR-183基因簇在后口动物和原口动物中高度保守,编码miR-182、miR-96和miR-183. miR-183基因簇在动物感觉器官中特异性表达,对动物感觉器官的发育和功能至关重要. miR-183基因簇还与人类的肺癌、肝癌、乳腺癌、胰腺癌和黑色素瘤等多种癌症相关. miR-183基因簇在多种肿瘤细胞中异常表达,它们通过调控与肿瘤细胞分裂和死亡相关基因,而起到促进或抑制肿瘤发生的作用. 本文对miR-183基因簇miRNAs在动物感觉器官功能和发育及人类肿瘤发生中的作用进行论述.  相似文献   

10.
11.
12.
The Notch pathway mediates cell-cell interaction in many developmental processes. Multiple proteins regulate the Notch pathway, among these are the products of the fringe genes. The first fringe gene was identified in Drosophila, where it is involved in the formation of the dorsal/ventral border of the wing disc. It has now been found to be crucial for determining the dorsal/ventral border of the Drosophila eye. In vertebrates, fringe genes play roles in the formation of the apical ectodermal ridge, the dorsal/ventral border in the limb bud, and in the development of somitic borders. The roles of fringe in the neural tube or the eyes of vertebrate embryos are not clear, although it is unlikely that these roles are evolutionarily related to those in the same tissues in Drosophila. Genetic evidences suggest that Fringe protein functions by modulating the Notch signaling pathway, perhaps through differential regulation of Notch activation by different ligands; however, the mechanism underlying Fringe function remains to be investigated.  相似文献   

13.
Winter geometrid moths exhibit sexual dimorphism in wing length and female‐specific flightlessness. Female‐specific flightlessness in insects is an interesting phenomenon in terms of sexual dimorphism and reproductive biology. In the winter geometrid moth, Protalcis concinnata (Wileman), adult females have short wings and adult males have fully developed wings. Although the developmental process for wing reduction in Lepidoptera is well studied, little is known about the morphology and the developmental pattern of short‐winged flightless morphs in Lepidoptera. To clarify the precise mechanisms and developmental processes that produce short‐winged morphs, we performed morphological and histological investigations of adult and pupal wing development in the winter geometrid moth P. concinnata. Our findings showed that (a) wing development in both sexes is similar until larval‐pupal metamorphosis, (b) the shape of the sexually dimorphic wings is determined by the position of the bordering lacuna (BL), (c) the BL is positioned farther inward in females than in males, and (d) after the short pupal diapause period, the female pupal wing epithelium degenerates to approximately two‐thirds its original size due to cell death. We propose that this developmental pattern is a previously unrecognized process among flightless Lepidoptera.  相似文献   

14.
Females of the ants belonging to the queenless genus Diacamma have a pair of unique tiny thoracic appendages, called "gemmae," located on the mesothoracic segment. They are covered with sensory hairs, filled with exocrine glands and are involved in the behavioral regulation of reproduction. We report here a morphological, developmental, and genetic study of the development of the gemmae. Both male and female larvae have dorsal mesothoracic discs, although differing in shape and fate. In Diacamma ceylonense, we show that, contrary to butterflies, these discs specify parts of the adult thorax in addition to wing tissues, as in Drosophila. We have cloned and studied the expression of wingless (wg) and scalloped (sd), two genes known to play a critical role in wing morphogenesis in Drosophila. In the fly's mesothoracic dorsal disc, sd is specifically expressed in the wing pouch. In Diacamma, we show that sd is also expressed in male dorsal thoracic discs, whereas its expression was undetectable in females. From this result and observations of shape and growth of cultured isolated discs, we suggest that gemmae originate from a more ventral part of the dorsal disc than the wing pouch and discuss the pro and cons of gemma/wing homology.  相似文献   

15.
In Drosophila, imaginal wing discs, Wg and Dpp, play important roles in the development of sensory organs. These secreted growth factors govern the positions of sensory bristles by regulating the expression of achaete-scute (ac-sc), genes affecting neuronal precursor cell identity. Earlier studies have shown that Dally, an integral membrane, heparan sulfate-modified proteoglycan, affects both Wg and Dpp signaling in a tissue-specific manner. Here, we show that dally is required for the development of specific chemosensory and mechanosensory organs in the wing and notum. dally enhancer trap is expressed at the anteroposterior and dorsoventral boundaries of the wing pouch, under the control of hh and wg, respectively. dally affects the specification of proneural clusters for dally-sensitive bristles and shows genetic interactions with either wg or dpp signaling components for distinct sensory bristles. These findings suggest that dally can differentially regulate Wg- or Dpp-directed patterning during sensory organ assembly. We have also determined that, for pSA, a bristle on the lateral notum, dally shows genetic interactions with iroquois complex (IRO-C), a gene complex affecting ac-sc expression. Consistent with this interaction, dally mutants show markedly reduced expression of an iro::lacZ reporter. These findings establish dally as an important regulator of sensory organ formation via Wg- and Dpp-mediated specification of proneural clusters.  相似文献   

16.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

17.
The wingless mutant flügellos ( fl ) of the silkworm lacks all four wings. Although wing discs of the fl seem to develop normally until the fourth larval instar, wing morphogenesis stops after the fourth larval ecdysis, probably caused by aberrant expression of an unidentified factor, referred to as fl . To characterize factor fl , the wing discs dissected from the wild-type (WT) and fl larvae were transplanted into other larvae and developmental changes of the discs were examined. When the wing disc from a WT larva was transplanted into another WT larva and allowed to grow until emergence, a small wing appeared that was covered with scales. Thus, the transplanted wing discs can develop autonomously, form scales and evert from adult skin. The WT wing discs transplanted into the fl larvae also developed at a high rate. However, the fl wing discs transplanted into the WT larvae did not develop during the larval to pupal developmental stages. These data suggest that the fl gene product (factor fl) works in the wing disc cells during wing morphogenesis. Its function cannot be complemented by hemolymph in the WT larva. It is also implied that the level of humoral factors and hormones required for wing morphogenesis are normally maintained in the fl larva.  相似文献   

18.
Casso DJ  Biehs B  Kornberg TB 《Genetics》2011,187(2):485-499
Notch has multiple roles in the development of the Drosophila melanogaster wing imaginal disc. It helps specify the dorsal-ventral compartment border, and it is needed for the wing margin, veins, and sensory organs. Here we present evidence for a new role: stimulating growth in response to Hedgehog. We show that Notch signaling is activated in the cells of the anterior-posterior organizer that produce the region between wing veins 3 and 4, and we describe strong genetic interactions between the gene that encodes the Hedgehog pathway activator Smoothened and the Notch pathway genes Notch, presenilin, and Suppressor of Hairless and the Enhancer of split complex. This work thus reveals a novel collaboration by the Hedgehog and Notch pathways that regulates proliferation in the 3-4 intervein region independently of Decapentaplegic.  相似文献   

19.
20.
Hox基因与昆虫翅的特化   总被引:2,自引:1,他引:1  
翟宗昭  杨星科 《昆虫学报》2006,49(6):1027-1033
自从1978年E.B. Lewis描述了著名的果蝇双胸突变体(bithorax)以来,大量的比较发育遗传学研究为我们揭示了形态进化的遗传基础,从而使形态进化研究进入了一个新的时代。同时,Hox基因的研究也成为这一领域的焦点。本文综述了昆虫翅的起源及其特化类群翅的发育遗传学研究的最新进展。一般认为,原始的有翅昆虫胸腹部多附肢(包括翅); 之后不同的体节受到了不同Hox的抑制,形成两对翅以及前后翅的分化; Ubx的不同表达导致了前后翅的分化,并且Ubx负责识别后翅。我们选择翅特化最为显著的3个类群——鞘翅目(T2鞘翅)、双翅目(T3平衡棒)和捻翅目(T2平衡棒),结合Hox的表达情况讨论了翅的特化机理。目前已知双翅目和鞘翅目的翅的控制模式存在巨大差异,两种模式的比较研究对于理解翅的形态进化具有重要的意义。但是对捻翅目昆虫的研究则很少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号