首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In heart of genetically obese (fa/fa) 12-week-old Zucker rats, ventricle contractility (4 mM KCl medium), amplitude and duration of slow action potentials (14 mM KCl medium) were less increased by isoprenaline than in heart of non obese (Fa/fa) rats. This difference could be related to a lower reactivity of beta-adrenoceptors in obese rat heart.  相似文献   

2.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

3.
We previously observed a rapid reduction in plasma ceruloplasmin activity in lean Zucker (Fa/Fa) rats fed a marginal copper (Cu)-deficient diet compared to similarly fed obese Zucker (fa/fa) and lean Sprague-Dawley rats. In an effort to understand the mechanisms underlying this response, we utilized the isotope dilution method to investigate the absorption and excretion of Cu in lean Zucker rats fed control and marginal Cu diets. Sprague-Dawley (SD) and homozygous lean Zucker rats were fed either a Cu-adequate (Cont; 7.5 μg Cu/g diet) or a low Cu (Low; 1.1 μg Cu/g diet) casein-based diet for 23 d. Two weeks following initiation of the dietary treatment, each rat was injected intramuscularly (im) with 11.2 μCi of67Cu. Urine and feces were collected daily. On the 9th d following isotope injection, rats were killed and tissues collected. Significant dietary effects were observed in the relative absorption and endogenous fecal excretion of67Cu. The tissue distributions of nonisotopic Cu and67Cu activity were also different between dietary treatments. Tissues from rats fed the low-Cu diet typically had high concentrations of67Cu and low concentrations of nonisotopic Cu compared to controls. An increase in relative67Cu absorption was evident for rats fed the low-Cu diet (57.2 and 39.3%, for SD Low, Zucker Low, respectively, and 17.9, and 28.5% SD Cont and Zucker Cont, respectively). Rats fed the low-Cu diet also had reductions in endogenous fecal excretion of67Cu compared to their respective controls. Although strain effects were not evident for either percent Cu absorption or endogenous fecal Cu excretion, the relative adaptive changes appeared more marked for the Sprague-Dawley rats compared to the lean Zucker rats.  相似文献   

4.
The activity of hepatic microsomal cholesterol 7 alpha-hydroxylase was studied in genetically obese and lean Zucker rats. The liver microsomal cholesterol 7 alpha-hydroxylase activity in fatty Zucker rats (fa/fa) is about 50% to 70% lower than that of the lean (Fa/-) rats of the same sex, when animals were sacrificed at the middle of the dark cycle. When rats were sacrificed at the middle of the light cycle, cholesterol 7 alpha-hydroxylase activity was the same as in the dark cycle in obese rats of both sexes, but was 65% lower in lean rats. However, cholesterol 7 alpha-hydroxylase activity was stimulated by the treatment with cholestyramine in both obese and lean rats. Our results suggested that the diurnal regulation of cholesterol 7 alpha-hydroxylase activity is lost in obese rats but was present under cholestyramine treatment in the genetically obese strain of rats.  相似文献   

5.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

6.
Plasma concentrations of insulin, corticosterone, T3, T4 and glucose were measured at 6 hour intervals throughout 24 hours in undisturbed, 34-day-old lean (Fa/?) and genetically obese (fa/fa) Zucker rats. fa/fa rats had higher plasma concentrations of insulin at all sampling times and higher plasma concentrations of corticosterone at 0300 and 0900 hours. Neither T3 nor T4 levels differed between phenotypes at any sampling time. Fasting for 24 hours at 34 days abolished the hyperinsulinaemia of fa/fa rats and raised the plasma corticosterone concentrations of both phenotypes. Before weaning there were no phenotypic differences in the plasma insulin or corticosterone concentrations measured at two sampling times in undisturbed rats. Following an intra-gastric glucose load however, fa/fa rats became hyper-insulinaemic compared with similarly treated Fa/? animals. Pancreatic insulin contents were higher in fa/fa rats at 34 days of age, but not before weaning. Somatostatin contents of the pancreas, hypothalamus and cerebral cortex did not differ between phenotypes at either 18 or 34 days of age. In conclusion, the elevated plasma concentrations of insulin and corticosterone in young fa/fa rats may contribute to their greater lipid deposition and lower protein deposition.  相似文献   

7.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

8.
T T Yen  W N Shaw  P L Yu 《Heredity》1977,38(3):373-377
The breeding data on Zucker rats and on Koletsky rats confirm that the obesity in these two strains of rats is inherited recessively and results from single gene mutations. Mating a Zucker heterozygote to a Koletsky heterozygote produced obese F1 progeny. Inter-stock breeding results indicate that the obesity in the Zucker-Koletsky hybrid stock is also inherited in a recessive manner. The gene that controls obesity in the Zucker rats, fatty (fa), and the gene that controls obesity in the Koletsky rats, f, are thus alleles at the same locus. We propose that f be renamed fak until it can be proven that fa and fak are identical.  相似文献   

9.
Previous studies have shown that the synthesis of renal cytochrome P-450 (CYP)-derived eicosanoids is downregulated in genetic or high-fat diet-induced obese rats. Experiments were designed to determine whether fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist, would induce renal eicosanoid synthesis and improve endothelial function in obese Zucker rats. Administration of fenofibrate (150 mg.kg(-1).day(-1) for 4 wk) significantly reduced plasma insulin, triglyceride, and total cholesterol levels in obese Zucker rats. CYP2C11 and CYP2C23 proteins were downregulated in renal vessels of obese Zucker rats. Consequently, renal vascular epoxygenase activity decreased by 15% in obese Zucker rats compared with lean controls. Chronic fenofibrate treatment significantly increased renal cortical and vascular CYP2C11 and CYP2C23 protein levels in obese Zucker rats, whereas it had no effect on epoxygenase protein and activity in lean Zucker rats. Renal cortical and vascular epoxygenase activities were consequently increased by 54% and 18%, respectively, in fenofibrate-treated obese rats. In addition, acetylcholine (1 microM)-induced vasodilation was significantly reduced in obese Zucker kidneys (37% +/- 11%) compared with lean controls (67% +/- 9%). Chronic fenofibrate administration increased afferent arteriolar responses to 1 microM of acetylcholine in obese Zucker rats (69% +/- 4%). Inhibition of the epoxygenase pathway with 6-(2-propargyloxyphenyl)hexanoic acid attenuated afferent arteriolar diameter responses to acetylcholine to a greater extent in lean compared with obese Zucker rats. These results demonstrate that the PPAR-alpha agonist fenofibrate increased renal CYP-derived eicosanoids and restored endothelial dilator function in obese Zucker rats.  相似文献   

10.
11.
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes.  相似文献   

12.
Mitochondrial respiration and ATP synthesis were examined in young rats of the Sprague-Dawley, Wistar, BHE and Zucker strains. Both lean and obese Zucker rats were studied. Pyruvate-supported state 3 respiration was highest in mitochondria from Sprague-Dawley rats and least in mitochondria from obese Zucker rats. Succinate-supported state 3 respiration was highest in the Wistar group and least in the Sprague-Dawley rats. There appeared to be no relationship between oxygen consumption and the genetic tendency for hepatic hyperlipogenesis. ATP synthesis was greatest in the obese Zucker rats and least in the Sprague-Dawley rats. Differences in liver weights and mitochondrial yields may explain, in part, these observed strain differences in mitochondrial activity.  相似文献   

13.
Developmental changes in hepatic growth hormone binding sites were examined in the genetically obese male fa/fa rats and in the lean littermates. At 16 days, fa/fa pups are normoinsulinemic; the specific binding of 125I-hGH to liver membranes is comparable in the two genotypes. At 4 weeks and later on, plasma membranes and Golgi fractions of male obese Zucker rats have more GH binding sites than lean littermates. The GH pituitary content is comparable in the two genotypes from 2 to 8 weeks and in 14-week-old fa/fa rats it is half that in lean animals. In the two genotypes plasma IGFI dramatically increases during puberty. At 4 weeks, plasma IGFI level is significantly higher in fa/fa rats than in lean littermates. In this model of genetic obesity, an increased GH binding to liver membranes is observed after the third week of life, shortly after the onset of hyperinsulinemia in the fa/fa rat.  相似文献   

14.
Ghrelin is a new orexigenic and adipogenic peptide primarily produced by the stomach and the hypothalamus. In the present experiment, we determined the circulating ghrelin levels in 60-week old fa/fa Zucker rats with a well-established obesity (n = 12) and in their lean (FA/FA) counterparts (n = 12). We also tested the feeding response of both groups to intra-peritoneal (I.P.) injection of ghrelin agonist and antagonist. Obese rats ate significantly more than the lean rats (21.7 +/- 1.1 vs. 18.3 +/- 0.3 g/day; p < 0.01). Their plasma ghrelin concentration was 35% higher than that in the lean homozygous rats (p < 0.025). GHRP-6 (1 mg/kg I.P, a GHS-R agonist) stimulated food intake in lean but not in obese rats (p < 0.01), whereas [D-Lys)]-GHRP-6 (12 mg/kg I.P., a GHS-R antagonist) decreased food intake in both groups (p < 0.0001). These results indicate that the obese Zucker rat is characterized by an increase in plasma ghrelin concentrations and by an attenuated response to a GHS-R agonist. They support a role for ghrelin in the development of obesity in the absence of leptin signaling.  相似文献   

15.
Genetically obese Zucker rats have abnormally low brain insulin content   总被引:2,自引:0,他引:2  
The concentration of immunoreactive insulin (IRI) extracted from the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, amygdala, midbrain, and hindbrain was significantly lower in obese (fa/fa) and heterozygous (Fa/fa) Zucker rats in comparison to lean (Fa/Fa) Zucker rats. This deficit in brain IRI content was most severe in the hypothalamus and olfactory bulb and was independent of severe obesity since the marked reduction of brain IRI content was also found in heterozygous rats which possessed only one copy of the fa allele. These results demonstrate that in the 2-3 month-old female Zucker rat, the fa allele is associated with defective regulation of insulin in the brain.  相似文献   

16.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

17.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

18.
A recent report from our group demonstrated that insulin facilitates muscle protein synthesis in obese Zucker rats. The purpose of this study was to determine whether PKC, a probable modulator of insulin signal transduction and/or mRNA translation, has a role in this insulin-mediated anabolic response. In the first portion of the study, gastrocnemius muscles of lean and obese Zucker rats (n = 5-7 for each phenotype) were bilaterally perfused with or without insulin to assess cytosolic and membrane PKC activity. Limbs perfused with insulin demonstrated greater PKC activity in both lean and obese Zucker rats (P < 0.05) compared with no insulin, but overall activity was greater in obese animals (by approximately 27% compared with lean, P < 0.05). To determine whether PKC plays a role in muscle protein synthesis, hindlimbs (n = 6-8 for each phenotype) were bilaterally perfused with or without insulin and/or GF-109203X (GF; a PKC inhibitor). The presence of GF did not influence the rates of insulin-mediated protein synthesis in gastrocnemius muscle of lean Zucker rats. However, when obese rats were perfused with GF (P < 0.05), the effect of insulin on elevating rates of protein synthesis was not observed. We also used phorbol 12-myristate 13-acetate (TPA, a PKC activator; n = 5-7 for each phenotype) with and without insulin to determine the effect of PKC activation on muscle protein synthesis. TPA alone did not elevate muscle protein synthesis in lean or obese rats. However, TPA plus insulin resulted in elevated rates of protein synthesis in both phenotypes that were similar to rates of insulin alone of obese rats. These results suggest that PKC is a modulator and is necessary, but not sufficient, for insulin-mediated protein anabolic responses in skeletal muscle.  相似文献   

19.
Objective: The aim of this study was to evaluate the effects of the selective angiotensin receptor 1 antagonist irbesartan on the growth and differentiation of the adipocytes in obese Zucker fa/fa rats. Research Methods and Procedures: Obese Zucker fa/fa rats were treated by oral route for 3 weeks with irbesartan at doses of 3–10‐30 mg/kg per day. The adipocyte differentiation was evaluated by analyzing tissue samples of white (retroperitoneal) or brown (interscapular) adipose tissue for the presence of peroxisome proliferator activated receptor γ, leptin, and the activity of glycerol‐3‐phosphate dehydrogenase. Results: This study showed that the treatment of obese Zucker fa/fa with irbesartan effectively reduced the differentiation of adipocytes within brown (interscapular) and white (retroperitoneal) adipose tissue. In fact, irbesartan significantly (p < 0.01) and dose‐dependently reduced the tissue levels of leptin, peroxisome proliferator activated receptor γ, and the activity of the enzyme glycerol‐3‐phoshate dehydrogenase accepted markers of adipocyte differentiation. None of the tested doses of irbesartan affected these markers in non‐obese rats. Discussion: The antagonism of the angiotensin receptor 1 receptors with irbesartan reduces the adipogenic activity of angiotensin II in obese Zucker rats, with the endpoint being reduction of the growth and differentiation of the adipocytes within the adipose tissue.  相似文献   

20.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号