共查询到20条相似文献,搜索用时 0 毫秒
1.
A recently proposed model for canine reduction in hominid evolution (the “dual selection” model) suggests that canine reduction occurs as a result for incorporation of the canines into a functional incisal field. Among the evidence used to support this model are patterns of wear and occlusion of the canine teeth, particularly in female anthropoid primates. We examined wear and occlusal patterns of the canine teeth of 311 male and female anthropoid primates. We find no evidence that the canines are typically occluded tip-to-tip, or that they show wear patterns indicating a “gripping and pulling” function during food ingestion and processing. Furthermore, we do not find compelling evidence that the development of the mesial cristid is associated with canine reduction. While we agree that the mechanisms of selective pressures underlying canine reduction need to be investigated, the “dual selection” hypothesis is unsupported by comparative data. © 1996 Wiley-Liss, Inc. 相似文献
2.
3.
P. M. Kappeler 《Journal of evolutionary biology》1996,9(1):43-65
The goals of this study were to analyze the origin and function of sex differences in the size of canine teeth among Malagasy lemurs and other strepsirhine primates. These analyses allowed me to illuminate interactions between different mechanisms of sexual selection and to elucidate constraints on this sexually-selected trait. In contrast to central predictions of sexual selection theory, polygynous lemurs lack both sexual dimorphism in body size and male social dominance, but the degree of sexual dimorphism in the size of their canines is not known. A comparison of male and female canine size in 31 species of lemurs and lorises revealed significant male-biased canine dimorphism in only 6 of 13 polygynous lemur species. This result is in contrast to predictions of a hypothesis that would explain the lack of size dimorphism in lemurs as a result of high viability costs because canine teeth presumably have low maintenance costs and because they are used as weapons in male-male combat. Moreover, because females had significantly larger maxillary canines than males in only one lemur species, female dominance is not generally based on female physical superiority and selective forces favoring female dominance do not constrain sexual canine dimorphism in the sense of a pleiotropic effect. Contrary to predictions of sexual selection theory, species differences in canine dimorphism across strepsirhines were neither associated with differences in mating system, nor with the potential frequency of aggression. Variation in canine dimorphism was also unrelated to differences in body size, but there were significant differences among families, pointing to strong phylogenetic constraints. This study demonstrated that polygynous lemurs are at most subject to weak intrasexual selection on dental traits used in male combat and that traits thought to be under intense sexual selection are strongly influenced by phylogenetic factors. 相似文献
4.
The effects of a series of ecological and size factors on the degree of sexual dimorphism in body weight and canine size were
studied among subsets of 70 primate species. Variation in body-weight dimorphism can be almost entirely attributed to body
weight (83% of variance R2
of weight dimorphism). Much smaller amounts of the variation can be attributed to mating system (R2 =6.8%,polygynous species being more dimorphic than monogamous ones) and diet (R2 = 2.5%,frugivorous species being more dimorphic than folivorous ones). Habitat (arboreal vs. terrestrial) and activity rhythm (nocturnal
vs. diurnal) have only an indirect effect on weight dimorphism. Variation in canine-size dimorphism can be explained in terms
of canine size (R2 =49%),activity rhythm (R2 = 20%,diurnal species being more dimorphic than nocturnal ones), and mating system (R2 = 10%).Habitat and diet do not play a significant role in canine-size dimorphism. The unexpectedly high contribution of size to sexual
dimorphism coupled with the observation of increased sexual dimorphism with increased size leads us to formulate a new selection
model for the evolution of sexual dimorphism. We suggest that if there is selection for size increase, whatever its cause,
directional selection in both males and females will lead to an increase in sexual dimorphism based on differences in genetic
variance between the sexes. Sexual selection, resource division between the sexes, or lopsided reproductive selection need
not play a role in such a model. 相似文献
5.
The annotated bibliography on sexual dimorphism in primates compiled by the authors was analysed considering the distribution of entries by keytitles, keywords, kind of periodicals and years of publication. A growing interest in this field was observed especially since the 1970s, but a relative scarcity of basic methodological papers was found. Articles on extant human populations and on living nonhuman primates are much more frequent than works on fossil primates and ancient humans. 相似文献
6.
Sexual size dimorphism in parasitoid wasps 总被引:1,自引:0,他引:1
Bethia Hurlbutt 《Biological journal of the Linnean Society. Linnean Society of London》1987,30(1):63-89
Sexual dimorphism in body length and proportion of overlap between the ranges of body length for males and females were estimated for 361 species of parasitoid wasps from 21 families. In most species, females are generally larger than males, though the range of male and female sizes overlap. Species in the family Ichneumonidae differ significantly from species in other families in three ways: (1) ichneumonids on average are larger, (2) in most species, females are generally smaller than males, and (3) on average, proportion overlap between the ranges of body length for males and females is greater. At present, there is a paucity of life history data on parasitoid wasp species for which size dimorphism is known. Thus it is not clear why ichneumonids differ from species in other families. Possible evolutionary explanations for variation in dimorphism among parasitoid wasp species are discussed. 相似文献
7.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc. 相似文献
8.
Sexual dimorphism in growth of conventional morphometric characters was investigated in juveniles and young adults (size range: 31 to 91 mm) of Oreochromis mossambicus . A closely associated set of traits was identified that shows sexually dimorphic growth, which was positively allometric in the males. These traits correspond to two different morphological complexes: jaw structure and anal/dorsal fins. The best sex discriminators among this set of traits were premaxilla width, anal fin height and snout length. These findings may be explained in terms of intra– and inter–sexual selection acting together and favouring males with strong and large mouths and high dorsal and anal fins, traits that are important in agonistic displays (jaw and fins), fighting and nest digging (jaw). 相似文献
9.
Adult body size and shape were examined in almost 1400 individuals of the tortoises Testudo graeca , T. hermanni and T. marginata from Greece. The size at maturity was greater in females than in males in all three species. Maximum and mean adult sizes were also greater in females than in males in T. graeca and T. hermanni . Males grew to a larger size than females in T. marginata , and mean adult size was similar in the sexes in this species. Sexual dimorphism of shape (adjusted for size covariate) was shown in most of the characters examined, and the degree of this dimorphism differed significantly among the three species. Differences were related to their contrasting courtship behaviours: horizontal head movements and severe biting in T. marginata , vertical head bobs and carapace butting in T. graeca , and mounting and tail thrusting in T. hermanni . There was no difference in the frequency of observations of courtship or fighting among the three species, but courtship was about 10 times more common than combat in males. All species showed greatest courtship activity in autumn; copulation was rarely observed in T. hermanni (only 0.36% of courting males) and not seen in the other species in the field. Observations made throughout the activity season indicated that feeding was equally common in males and females in all three species. Differences in shape were more likely to be the result of sexual selection than of natural selection for fecundity. Detailed predictions are made for sexual dimorphism of other characters in these species. 相似文献
10.
Takafumi Katsumura Shoji Oda Shigeki Nakagome Tsunehiko Hanihara Hiroshi Kataoka Hiroshi Mitani Shoji Kawamura Hiroki Oota 《Proceedings. Biological sciences / The Royal Society》2014,281(1797)
Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. 相似文献
11.
A number of factors, including sexual selection, body weight, body-weight dimorphism, predation, diet, and phylogenetic inertia have been proposed as influences on the evolution of canine dimorphism in anthropoid primates. Although these factors are not mutually exclusive, opinions vary as to which is the most important. The role of sexual selection has been questioned because mating system, which should reflect its strength, poorly predicts variation in canine dimorphism, particularly among polygynous species. Kay et al. (1988) demonstrate that a more refined estimate of intermale competition explains a large proportion of the variation in canine dimorphism in platyrrhine primates. We expand their analysis, developing a more generalized measure of intermale competition based on the frequency and intensity of male-male agonism. We examine the relative influences of predation (inferred by substrate use), female body weight, body-weight dimorphism, diet, and sexual selection on the evolution of anthropoid canine dimorphism. Intermale competition is very strongly associated with canine dimorphism. Predation also has a marked effect on canine dimorphism, in that savanna-dwelling species consistently show greater canine dimorphism than other species, all other factors being held equal. Body-weight dimorphism is also strongly associated with canine dimorphism, though apparently through a common selective basis, rather than through allometric effects. Body weight seems to play only a minor, indirect role in the evolution of canine dimorphism. Diet plays no role. Likewise, we find little evidence that phylogenetic inertia is a constraint on the evolution of canine dimorphism. 相似文献
12.
The Charadrii (shorebirds, gulls and alcids) are one of the most diverse avian groups from the point of view of sexual size dimorphism, exhibiting extremes in both male-biased and female-biased dimorphism, as well as monomorphism. In this study we use phylogenetic comparative analyses to investigate how size dimorphism has changed over evolutionary time, distinguishing between changes that have occurred in females and in males. Independent contrasts analyses show that both body mass and wing length have been more variable in males than in females. Directional analyses show that male-biased dimorphism has increased after inferred transitions towards more polygynous mating systems. There have been analogous increases in female-biased dimorphism after transitions towards more socially polyandrous mating systems. Changes in dimorphism in both directions are attributable to male body size changing more than female body size. We suggest that this might be because females are under stronger natural selection constraints related to fecundity. Taken together, our results suggest that the observed variation in dimorphism of Charadrii can be best explained by male body size responding more sensitively to variable sexual selection than female body size. 相似文献
13.
Sexual selection,sexual dimorphism and plant phylogeny 总被引:2,自引:0,他引:2
Mary F. Willson 《Evolutionary ecology》1991,5(1):69-87
Summary Darwin examined sexual dimorphism in animals, arguing that sexual selection was important in the evolution of such dimorphism. Sexual dimorphism in plants may have parallel causes and costs.The processes that contribute to sexual dimorphism may also lead to speciation and morphological differences among related species, as argued originally by Darwin. Where sexes are separate and dimorphism is well-developed, males of related animal species (both vertebrate and invertebrate) are often strikingly different from each other, while females may be virtually indistinguishable. A similar pattern may exist in plants: it is frequently the males (of dioecious taxa) or the male portions of the flower (in co-sexual flowers) that apparently have diversified. I suggest that the similarity of pattern may be accounted for by a similarity of process.In addition, sexual selection may have contributed to certain evolutionary trends within the angiosperms and, indeed, to angiosperm radiation. 相似文献
14.
Anthropoid primates are well known for their highly sexually dimorphic canine teeth, with males possessing canines that are up to 400% taller than those of females. Primate canine dimorphism has been extensively documented, with a consensus that large male primate canines serve as weapons for intrasexual competition, and some evidence that large female canines in some species may likewise function as weapons. However, apart from speculation that very tall male canines may be relatively weak and that seed predators have strong canines, the functional significance of primate canine shape has not been explored. Because carnivore canine shape and size are associated with killing style, this group provides a useful comparative baseline for primates. We evaluate primate maxillary canine tooth size, shape and relative bending strength against body size, skull size, and behavioral and demographic measures of male competition and sexual selection, and compare them to those of carnivores. We demonstrate that, relative to skull length and body mass, primate male canines are on average as large as or larger than those of similar sized carnivores. The range of primate female canine sizes embraces that of carnivores. Male and female primate canines are generally as strong as or stronger than those of carnivores. Although we find that seed-eating primates have relatively strong canines, we find no clear relationship between male primate canine strength and demographic or behavioral estimates of male competition or sexual selection, in spite of a strong relationship between these measures and canine crown height. This suggests either that most primate canines are selected to be very strong regardless of variation in behavior, or that primate canine shape is inherently strong enough to accommodate changes in crown height without compromising canine function. 相似文献
15.
16.
Natural selection can influence the evolution of sexual dimorphism through selection for sex-specific ecomorphological adaptations. The role of natural selection in the evolution of sexual dimorphism, however, has received much less attention than that of sexual selection. We examined the relationship between habitat structure and both male and female morphology, and sexual dimorphism in size and shape, across 21 populations of dwarf chameleon (genus Bradypodion). Morphological variation in dwarf chameleons was strongly associated with quantitative, multivariate aspects of habitat structure and, in most cases, relationships were congruent between the sexes. However, we also found consistent relationships between habitat and sexual dimorphism. These resulted from both differences in magnitude of ecomorphological relationships that were otherwise congruent between the sexes, as well as in sex-specific ecomorphological adaptations. Our study provides evidence that natural selection plays an important role in the evolution of sexual dimorphism. 相似文献
17.
Ryosuke Motani Da-yong Jiang Olivier Rieppel Yi-fan Xue Andrea Tintori 《Proceedings. Biological sciences / The Royal Society》2015,282(1815)
The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index −0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation. 相似文献
18.
19.
Serrano-Meneses MA Córdoba-Aguilar A Azpilicueta-Amorín M González-Soriano E Székely T 《Journal of evolutionary biology》2008,21(5):1259-1273
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation. 相似文献
20.
Leonard O. Greenfield 《American journal of physical anthropology》1998,107(1):87-96
One component of the “dual selection hypothesis” (Greenfield [1992a] Year. Phys. Anthropol. 35:153–185) is that the tips of female canines are commonly blunted and more frequently so than those of conspecific males. Data derived from two randomly selected age-graded samples of Macaca fascicularis (n = 70) and Colobus badius (n = 59) show that at least 80% of the females exhibit tip blunting on one or both canines and that frequencies of blunting are far greater than those of conspecific males in both jaws. Sexual dimorphism in mandibular canine morphology and wear and other recently critiqued aspects of the “dual selection hypothesis” (Plavcan and Kelley [1996] Am. J. Phys. Anthropol. 99:379–387.) are also discussed. Am J Phys Anthropol 107:87–97. © 1998 Wiley-Liss, Inc. 相似文献