首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Deoxy-d-[14C]glucose ([14C]DG) is commonly used to determine local glucose utilization rates (CMRglc) in living brain and to estimate CMRglc in cultured brain cells as rates of [14C]DG phosphorylation. Phosphorylation rates of [14C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [14C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMRglc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [14C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [14C]DG distribution space fell at the lowest glucose levels. Calculated CMRglc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [14C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.  相似文献   

2.
We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-d-[1,2-3H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased Vmax but not Km of GLUT3 for 2-deoxy-d-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.  相似文献   

3.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H+-dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of d- and l-[U-14C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-d-glucose/d-[U-14C]glucose and 3-O-methyl-d-glucose/3-O-methyl-d-[U-14C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH4Cl inhibited neither the linear component of d- and l-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-d-[U-14C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol− 1, respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol− 1). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

4.
β-d-Fructose-2,6-bisphosphate (Fru-2,6-P2) is an important regulator of eukaryotic glucose homeostasis, functioning as a potent activator of 6-phosphofructo-1-kinase and inhibitor of fructose-1,6-bisphosphatase. Pharmaceutical manipulation of intracellular Fru-2,6-P2 levels, therefore, is of interest for the treatment of certain diseases, including diabetes and cancer. [2-32P]Fru-2,6-P2 has been the reagent of choice for studying the metabolism of this effector molecule; however, its short half-life necessitates frequent preparation. Here we describe a convenient, economical, one-pot enzymatic preparation of high-specific-activity tritium-labeled Fru-2,6-P2. The preparation involves conversion of readily available, carrier-free d-[6,6′-3H]glucose to [6,6′-3H]Fru-2,6-P2 using hexokinase, glucose-6-phosphate isomerase, and 6-phosphofructo-2-kinase. The key reagent in this preparation, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from human liver, was produced recombinantly in Escherichia coli and purified in a single step using an appendant C-terminal hexa-His affinity tag. Following purification by anion exchange chromatography using triethylammonium bicarbonate as eluant, radiochemically pure [6,6′-3H]Fru-2,6-P2 having a specific activity of 50 Ci/mmol was obtained in yields averaging 35%. [6,6′-3H]Fru-2,6-P2 serves as a stable, high-specific-activity substrate in a facile assay capable of detecting fructose-2,6-bisphosphatase in the range of 10−14 to 10−15 mol, and it should prove to be useful in many studies of the metabolism of this important biofactor.  相似文献   

5.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 ± 18 and 180 ± 9 μl/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V? of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

6.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

7.
Abstract : The transport of glucose across the blood-brain barrier (BBB) is mediated by the high molecular mass (55-kDa) isoform of the GLUT1 glucose transporter protein. In this study we have utilized the tritiated, impermeant photolabel 2-N-[4-(1-azi-2,2,2-trifluoroethyl)[2-3H]propyl]-1,3-bis(d -mannose-4-yloxy)-2-propylamine to develop a technique to specifically measure the concentration of GLUT1 glucose transporters on the luminal surface of the endothelial cells of the BBB. We have combined this methodology with measurements of BBB glucose transport and immunoblot analysis of isolated brain microvessels for labeled luminal GLUT1 and total GLUT1 to reevaluate the effects of chronic hypoglycemia and diabetic hyperglycemia on transendothelial glucose transport in the rat. Hypoglycemia was induced with continuous-release insulin pellets (6 U/day) for a 12- to 14-day duration ; diabetes was induced by streptozotocin (65 mg/kg i.p.) for a 14- to 21-day duration. Hypoglycemia resulted in 25-45% increases in regional BBB permeability-surface area (PA) values for d -[14C]glucose uptake, when measured at identical glucose concentration using the in situ brain perfusion technique. Similarily, there was a 23 ± 4% increase in total GLUT1/mg of microvessel protein and a 52 ± 13% increase in luminal GLUT1 in hypoglycemic animals, suggesting that both increased GLUT1 synthesis and a redistribution to favor luminal transporters account for the enhanced uptake. A corresponding (twofold) increase in cortical GLUT1 mRNA was observed by in situ hybridization. In contrast, no significant changes were observed in regional brain glucose uptake PA, total microvessel 55-kDa GLUT1, or luminal GLUT1 concentrations in hyperglycemic rats. There was, however, a 30-40% increase in total cortical GLUT1 mRNA expression, with a 96% increase in the microvessels. Neither condition altered the levels of GLUT3 mRNA or protein expression. These results show that hypoglycemia, but not hyperglycemia, alters glucose transport activity at the BBB and that these changes in transport activity result from both an overall increase in total BBB GLUT1 and an increased transporter concentration at the luminal surface.  相似文献   

8.
Abstract— Replacement of bicarbonate-Locke incubation medium with feline CSF reduced [14C]ACh formation from [U-14C]glucose by rat brain mince approx 30%. CSF was obtained from a cannula leading to the cisterna magna of freely moving cats. The component of CSF responsible for inhibition was characterized as a dialyzable heat-stable organic anion. Choline acetyltransferase activity was not altered by CSF. [14C]ACh synthesis and 14CO2 production from [U-14C]glucose but not from [2-14C]-pyruvate were inhibited by CSF, suggesting inhibition in the metabolism of glucose to pyruvate. The anionic fraction of human CSF was as potent as that from feline CSF in inhibiting 14CO2 production from [U-14C]glucose. Brain hexokinase was inhibited by the anionic fraction of feline CSF. The inhibition was non-competitive with respect to glucose and uncompetitive with respect to ATP. It is suggested that inhibition of hexokinase by CSF was responsible at least in part for the inhibition of glucose metabolism which resulted in decreased [14C]ACh synthesis and 14CO2 production.  相似文献   

9.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

10.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

11.
Absorption kinetics of [14C]glucose and [β-methyl-14C]glucoside in Hymenolepis diminuta are reported. β-Methylglucoside (βMG) is a pure competitive inhibitor of [14C]glucose transport and has kinetic parameters, Vmax and Kt, for transport similar to those reported for glucose. While absorbed 14C-βMG is not metabolized, transport of this glucose analog retains the general characteristics which have been established for glucose transport including: (1) Na+ dependence, (2) inhibition by K+, (3) sensitivity to phlorizin and various hexoses, (4) transport against an apparent concentration gradient, and (5) increase in worm water during accumulation. It is concluded that glucose and βMG are transported by the same system. The value of using βMG to study the mechanism of hexose transport and accumulation in H. diminuta is suggested.  相似文献   

12.
2-Deoxy-D-glucose uptake in cultured human muscle cells   总被引:1,自引:0,他引:1  
Hexose uptake was studied with cultured human muscle cells using 2-deoxy-D-[1-3H]glucose. At a concentration of 0.25 and 4 mM, phosphorylation rather than transport was the rate-limiting step in the uptake of 2-deoxy-D-glucose. This was not due to inhibition of the hexokinase activity by either ATP depletion or 2-deoxyglucose 6-phosphate accumulation. In cellular homogenates, hexokinase showed a lower Km value for glucose as compared to 2-deoxyglucose. Intact cells preferentially phosphorylated glucose instead of 2-deoxyglucose. Therefore, transport instead of phosphorylation may be rate limiting in the uptake of glucose by cultured human muscle cells. These data suggest caution in using 2-deoxyglucose for measuring glucose transport.  相似文献   

13.
Rat liver slices were incubated with specifically 3H-labeled glucoses and [2-3H]sorbitol, and the incorporations of 3H into fatty acids and cholesterol were determined. Incorporation of 3H from [1-3H]glucose relative to that from [3-3H]glucose via NADPH formed in the pentose cycle was similar into fatty acids and cholesterol. This indicates (1) the presence of a common pool of NADPH formed via the pentose cycle, from which is derived the reductive hydrogens for fatty acid and cholesterol synthesis; (2) the absence of a major separate pool of NADPH formed from glucose by microsomal glucose dehydrogenase (EC 1.1.1.47) catalysis for use in cholesterol synthesis. 3H from [4-3H]glucose and from [2-3H]sorbitol was incorporated into cholesterol more than into fatty acids relative to the incorporations of 3H from [3-3H]glucose. Assuming that the 3H from [4-3H]glucose and from [2-3H]sorbitol were incorporated via the conversion, catalyzed by malic enzyme, of NADH to NADPH, this indicates the Compartmentation of the NADPH formed via malic enzyme catalysis from that formed via the pentose cycle. Alternatively, NADH provides reductive hydrogens for cholesterol synthesis in greater measure than in fatty acid formation or the stereochemistry of the synthetic processes are such that [A-3H]NADPH has greater excess than [B-3H]NADPH to cholesterol synthesis relative to fatty acid synthesis.  相似文献   

14.
Metabolic control analysis of tumor glycolysis has indicated that hexokinase (HK) and glucose transporter (GLUT) exert the main flux control (71%). To understand why they are the main controlling steps, the GLUT and HK kinetics and the contents of GLUT1, GLUT2, GLUT3, GLUT4, HKI, and HKII were analyzed in rat hepatocarcinoma AS‐30D and HeLa human cervix cancer. An improved protocol to determine the kinetic parameters of GLUT was developed with D ‐[2‐3H‐glucose] as physiological substrate. Kinetic analysis revealed two components at low‐ and high‐glucose concentrations in both tumor cells. At low glucose and 37°C, the Vmax was 55 ± 20 and 17.2 ± 6 nmol (min × mg protein)?1, whereas the Km was 0.52 ± 0.7 and 9.3 ± 3 mM for hepatoma and HeLa cells, respectively. GLUT activity was partially inhibited by cytochalasin B (IC50 = 0.44 ± 0.1; Ki = 0.3 ± 0.1 µM) and phloretin (IC50 = 8.7 µM) in AS‐30D hepatocarcinoma. At physiological glucose, GLUT1 and GLUT3 were the predominant active isoforms in HeLa cells and AS‐30D cells, respectively. HK activity in HeLa cells was much lower (60 mU/mg protein) than that in AS‐30D cells (700 mU/mg protein), but both HKs were strongly inhibited by G6P. HKII was the predominant isoform in AS‐30D carcinoma and HeLa cells. The much lower GLUT Vmax and catalytic efficiency (Vmax/Km) values in comparison to those of G6P‐sensitive HK suggested the transporter exerts higher control on the glycolytic flux than HK in cancer cells. Thus, GLUT seems a more adequate therapeutic target. J. Cell. Physiol. 221: 552–559, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

16.
Discrepancy between GLUT4 translocation and glucose uptake after ischemia   总被引:4,自引:0,他引:4  
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups (55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005)  相似文献   

17.
Muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized for arterial blood sampling and venous infusions. Experiments were conducted in conscious mice approximately 7 days after surgery. 2-Deoxy-[3H]glucose was administered during rest or treadmill exercise to calculate glucose concentration-dependent (Rg) and -independent (Kg) indexes of MGU. Compared with wild-type controls, GLUT4-overexpressing mice had lowered fasting glycemia (165 +/- 6 vs. 115 +/- 6 mg/dl) and increased Rg by 230 and 166% in the gastrocnemius and superficial vastus lateralis (SVL) muscles under sedentary conditions. GLUT4 overexpression was not able to augment exercise-stimulated Rg or Kg. Whereas HK II overexpression had no effect on fasting glycemia (170 +/- 6 mg/dl) or sedentary Rg, it increased exercise-stimulated Rg by 82, 60, and 169% in soleus, gastrocnemius, and SVL muscles, respectively. Combined GLUT4 and HK II overexpression lowered fasting glycemia (106 +/- 6 mg/dl), increased nonesterified fatty acids, and increased sedentary Rg. Combined GLUT4 and HK II overexpression did not enhance exercise-stimulated Rg compared with HK II-overexpressing mice because of the reduced glucose concentration. GLUT4 combined with HK II overexpression resulted in a marked increase in exercise-stimulated Kg. In conclusion, control of MGU shifts from membrane transport at rest to phosphorylation during exercise. Glucose transport is not normally a significant barrier during exercise. However, when the phosphorylation barrier is lowered by HK II overexpression, glucose transport becomes a key site of control for regulating MGU during exercise.  相似文献   

18.
A study was carried out to determine the effect of trypsin on glucose transport into brain cells. Two suspensions of dissociated cells were prepared from the two brain hemispheres of adult rats—one using only mechanical means to dissociate the cells and one using trypsin. The use of trypsin for preparation of dissociated brain cells caused a marked reduction in the rate of transport of [1,2-3H]-2-deoxy-d-glucose compared to uptakes of this glucose analog by cells prepared without trypsin. Responses of the two cell preparations to inhibitors of glucose transport (cytochalasin B and phloretin) were similar. Rates of oxidation of [6-14C]glucose to14CO2 by trypsin-treated cells were nearly double those in cells prepared without trypsin. Electron microscopic examination of the two preparations revealed much less preservation of structural integrity if trypsin was used to prepare the cells. The findings suggest that trypsin alters cell structure and affects receptor-regulated events in brain cells.  相似文献   

19.
Insulin stimulated phosphorylation of tyrosine residues by the insulin receptor kinase may be part of a signalling mechanism associated with insulin's action. We report that indomethacin inhibited the phosphorylation of the -subunit of the solubilized adipocyte insulin receptor. Indomethacin also inhibited several insulin-sensitive processes in intact rat adipocytes. Indomethacin (1 mM) inhibited basal phosphorylation of the -subunit of the solubilized insulin receptor by 6007o and insulin-stimulated phosphorylation by 30%. In adipocytes, indomethacin inhibited basal 3-0-[methyl-14C]-methyl-D glucose transport by 50070 (P < 0.01), D-[6-14C]-glucose oxidation by 5007o (P < 0.01), D-[6-14C]-glucose conversion to lipid by 30010 (P < 0.01), and D-[1-14C]-glucose conversion to lipid by 6007o (P<0.01). Similarly, indomethacin inhibited insulin-stimulated 3-0-[methyl-14C]-methyl-D-glucose transport by 75070 (P<0.01), D-[6-14C]-glucose oxidation by 20% (P<0.05), D-[1-14C]-glucose oxidation by 35070 (P<0.01), D-[6-14C] glucose conversion to lipid by 25010 (P<0.01), and D-[1-14C] glucose conversion to lipid by 4501o (P<0.01). In contrast, insulin binding to its receptor, basal D-[1-14C]-glucose oxidation and both basal and insulin-stimulated activation of glycogen synthase were unaffected by indomethacin. Thus, indomethacin partially inhibited autophosphorylation of the solubilized insulin receptor on tyrosine and partially inhibited some but not all of insulin's actions. This supports the hypothesis that insulin's metabolic effects are linked to activation of the insulin receptor protein kinase and indicates that there may be heterogeneity in the mechanisms of intracellular metabolic control by insulin.  相似文献   

20.
In vitro the transport into and release of [3H]thymidine, [3H]deoxyuridine, and [3H]nitrobenzylthioinosine (NBTI) from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, were studied separately. Using the ability of NBTI to inhibit nucleoside efflux from the choroid plexus, the transport of [3H]thymidine and [3H]deoxyuridine into the choroid plexus at 37 °C was measured. Like thymidine, deoxyuridine was transported into the choroid plexus against a concentration gradient by a saturable process that depended on intracellular energy production but not intracellular binding or metabolism. The Michaelis-Menten constants (KT) for the active transport of thymidine and deoxyuridine into the choroid plexus were 13.6 and 7.2 μM, respectively. Deoxyuridine and adenosine were competitive inhibitors of thymidine transport into the choroid plexus with inhibitor constants (KI) of 6.8 and 14.5 μM, respectively. [3H]NBTI was also transported into the choroid plexus at 37 °C; unlike [3H]thymidine and [3H]deoxyuridine, the release of [3H]NBTI was not inhibited by NBTI itself. These studies provide evidence that the choroid plexus contains an active nucleoside transport system of low specificity for nucleosides, and a separate, saturable efflux system for nucleosides that is very sensitive to inhibition by NBTI. In vivo these systems transport nucleosides from blood into cerebrospinal fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号