首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facultative heritable bacterial endosymbionts can have dramatic effects on their hosts, ranging from mutualistic to parasitic. Within-host bacterial endosymbiont density plays a critical role in maintenance of a symbiotic relationship, as it can affect levels of vertical transmission and expression of phenotypic effects, both of which influence the infection prevalence in host populations. Species of genus Drosophila are infected with Spiroplasma, whose characterized phenotypic effects range from that of a male-killing reproductive parasite to beneficial defensive endosymbiont. For many strains of Spiroplasma infecting at least 17 species of Drosophila, however, the phenotypic effects are obscure. The infection prevalence of these Spiroplasma vary within and among Drosophila species, and little is known about the within-host density dynamics of these diverse strains. To characterize the patterns of Spiroplasma density variation among Drosophila we used quantitative PCR to assess bacterial titer at various life stages of three species of Drosophila naturally-infected with two different types of Spiroplasma. For naturally infected Drosophila species we found that non-male-killing infections had consistently lower densities than the male-killing infection. The patterns of Spiroplasma titer change during aging varied among Drosophila species infected with different Spiroplasma strains. Bacterial density varied within and among populations of Drosophila, with individuals from the population with the highest prevalence of infection having the highest density. This density variation underscores the complex interaction of Spiroplasma strain and host genetic background in determining endosymbiont density.  相似文献   

2.
Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.  相似文献   

3.
Kravchenko  K. L.  Prikop  M. V.  Bazhenov  A. A. 《Biophysics》2017,62(4):671-674

Analysis of the motions of Drosophila melanogaster laboratory populations and their relationship to the heliogeophysical parameters (the radio-wave flux at the wavelength of 10.7 cm (F10.7), Wolf numbers (W), the planetary K p-index, an indicator of geomagnetic activity) was carried out. A significant correlation between the changes in the characteristics of solar activity (F10.7, W) and the dynamics of the motions of Drosophila was detected. The association strongly depends on the sexual structure of the Drosophila populations, which follows from the difference in the distributions of this association.

  相似文献   

4.
Temperature plays a fundamental role in the fitness of all organisms. In particular, it strongly affects metabolism and reproduction in ectotherms that have limited physiological capabilities to regulate their body temperature. The influence of temperature variation on the physiology and behaviour of ectotherms is well studied but we still know little about the influence of symbiotic interactions on thermal preference (Tp) of the host. A growing number of studies focusing on the Wolbachia-Drosophila host-symbiont system found that Wolbachia can influence Tp in Drosophila laboratory strains. Here, we investigated the effect of Wolbachia on Tp in wild-type D. melanogaster flies recently collected from nature. Consistent with previous data, we found reduced Tp compared to an uninfected control in one of two fly strains infected with the wMelCS Wolbachia type. Additionally, we, for the first time, found that Wolbachia titer variation influences the thermal preference of the host fly. These data indicate that the interaction of Wolbachia and Drosophila resulting in behavioural variation is strongly influenced by the genetic background of the host and symbiont. More studies are needed to better understand the evolutionary significance of Tp variation influenced by Wolbachia in natural Drosophila populations.  相似文献   

5.
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host–symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus‐specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell‐autonomous, these effects are likely to affect the virus‐blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host–symbiont–virus‐dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.  相似文献   

6.
Summary Drosophila C virus (DCV) has a considerable impact on ovarian morphogenesis inDrosophila melanogaster host populations. This virus also affects the developmental time and the fresh weight of infected females. In order to investigate the hypothesis that DCV may play a role in the dynamics ofDrosophila populations, the fertility and embryonic and larvo-pupal death rates of a host population and that of five DCV-free populations were determined. A comparison of two populations, one of them DCV-free, the other infected, suggested that the fertility of the DCV-infected flies was higher than that of uninfected flies, despite a greater larvo-pupal death rate. Fertility of the infected flies was greater among the infected population than for the DCV-free populations. The DCV-free populations originated from five different localities. The virus clearly does have an impact on the biotic potential of its host population. This paper reports for the first time a positive interaction between a viral population and a host population as it increases certain parameters of host population dynamics.  相似文献   

7.
Drosophila melanogaster can be parasitized by a picornavirus, the Drosophila C virus (DCV). The virus is not hereditary, but it is horizontally transmitted (by ingestion or contact). When first larval instars come into contact with DCV unusual interactions are observed between host and microparasite. DCV acts differently depending on the stage in the host's life cycle. It boosts the reproductive capacity of adults, but it diminishes survival during the pre-reproductive period. In infected flies, the DCV target organs are principally the follicular cells and the fat body. The infected cells resemble DCV-free cells. According to the parameters of the Drosophila lifecycle, measured for different Drosophila strains, at different temperatures, and for different viral doses, DCV could be considered either as a parasite, because it increases pre-adult mortality, or as a mutualist, because it increases the reproductive capacity of the host and decreases its developmental time. Like many viruses, DCV is extremely pathogenic when injected into flies, which then die within a few days. Only one strain resists the disease longer. The resistant phenotype is dominant. Genes of chromosome 3 of the host are involved. Interactions are discussed in terms of an arms race and peaceful cohabitation. They are also considered in terms of biodiversity for the host and for the microparasite.  相似文献   

8.
Intrauterine infection with human cytomegalovirus (HCMV) is the leading viral cause of birth defects involving the central nervous system. Due to the highly species specific nature of the virus, its course of natural infection cannot be studied in animal models. Here we introduce a novel transgenic Drosophila model system for studying the effects of the major viral regulatory genes, the immediate-early genes, on normal embryonic development. We show that ectopic expression of the immediate-early genes in Drosophila led to increased embryonic lethality manifested in disintegration of the embryos. Further analysis suggested that immediate-early gene expression interfered with adherens junction maintenance, leading to the disruption of embryonic epithelial integrity. Owing to the evolutionary conservation of developmental mechanisms from invertebrates to mammals, we anticipate that the studies in Drosophila will be relevant also to humans and will ultimately provide a versatile system for studying different aspects of viral-host interactions.  相似文献   

9.
Although, circadian clocks are believed to be involved in the regulation of life-history traits such as pre-adult development time and lifespan in fruit flies Drosophila melanogaster, there is very little unequivocal evidence either to support or refute this. Here we report the results of a long-term study aimed at examining the role of circadian clocks in the temporal regulation of pre-adult development in D. melanogaster. We employed laboratory selection protocol for faster pre-adult development on four large, outbred, random mating populations of Drosophila. We assayed pre-adult development time and circadian period of locomotor activity rhythm of these flies at regular intervals of 5–10 generations. After 50 generations of selection, the overall egg-to-adult duration in the selected stocks was reduced by ~29 h (~12.5 %) relative to controls, with the selected populations showing a concurrent reduction in time taken to hatching, pupation and wing pigmentation, by ~2, ~16, and ~25.2 h, respectively. Furthermore, selected populations showed a concomitant reduction in the circadian period of locomotor activity rhythm, implying that circadian clocks and development time are correlated. Thus, our study provides the first ever unequivocal evidence for the evolution of circadian clocks as a correlated response to selection for faster pre-adult development, suggesting that circadian clocks and development are linked in fruit flies D. melanogaster.  相似文献   

10.
11.
The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach.  相似文献   

12.
Abstract.
  • 1 Asobara tabida is a parasitoid of Drosophila larvae in fermenting substrates. Because it is a widespread species, it may encounter different biotic and abiotic circumstances in various parts of its range.
  • 2 The species composition of the host population varies over the parasitoid's range: D.obscura-group species (especially D.subobscura) are the main hosts for northwestern and central European parasitoids; D.melanogaster is the main host for southern European parasitoids.
  • 3 D.melanogaster larvae can defend themselves against A.tabida by encapsulating the parasitoid egg, and survival in D.melanogaster is always lower than in D.subobscura.
  • 4 Parasitoids from southern European populations are much better able to survive in D.melanogaster than their northwestern and central European conspecifics; parasitoids from different populations are equally well able to survive in D.subobscura.
  • 5 The lower survival in D.melanogaster may be partly compensated for by the larger size of parasitoids emerging from this host species compared to parasitoids emerging from D.subobscura.
  • 6 Within population groups, larger A.tabida females have more eggs in their ovarioles. Additionally, southern European females have more eggs and less fat than northern and western/central European females. The relationship between size and longevity is ambiguous.
  • 7 It is concluded that parasitoids from different populations are adapted to region-specific circumstances.
  相似文献   

13.
The number of ovarioles of the Drosophila melanogaster ovary is a trait thought to be associated with female fecundity, and therefore is expected to be under strong natural selection. This hypothesis may be tested by examining patterns of genetic and environmental variation for ovariole number in natural populations, and by determining the association between ovariole number and fitness in isogenic lines derived from a natural population. We measured ovariole number, and competitive fitness and its components, for 48 homozygous chromosome 3 substitution lines in a standard inbred background; and body size in a sample of 15 chromosome 3 substitution lines. We found significant segregating genetic variation for ovariole number, with a broad-sense heritability (H2) of 0.403 and correspondingly high coefficients of genetic variation (CVC = 20.8) and residual variation (CVR = 25.3). Estimates of quantitative genetic parameters for body size (H2 = 0.191, CVG = 2.15, and CVR = 3.87) are similar to those previously reported for this trait. Although the isogenic chromosome 3 substitution lines varied significantly for components of fitness, there was no significant linear or quadratic association of ovariole number and body size with fitness. There was, however, highly significant sex × genotype interaction for fitness among these lines. This special case of genotype × environment interaction for fitness may contribute to the maintenance of genetic variation for fitness in natural populations.  相似文献   

14.
We carried out experiments with the Drosophila C virus (DCV), a nonhereditary virus acting on demographic parameters of infected Drosophila host populations. It is well known that DCV increases mortality rate, decreases developmental time, and increases daily fecundity. As usual for Drosophila viruses, the DCV was multiplied in vivo. In this study we tested the hypothesis of virulence variability in DCV strains by isolating different stocks of the virus. The flies were tested for susceptibility to injection of such isolates and for virulence variability. Possible interactions between demographic parameters in three Drosophila host populations and injected isolates were studied under two egg densities (low and high). The hypothesis of virulence variability of DCV was supported by significant differences in mortality rates, depending on whether virus isolates were ingested or injected. When DCV was ingested, differences between host mortality rates were independent of the Drosophila host populations. Nevertheless, the developmental time was equally decreased by each virus isolate, independent of the host population. Moreover, the two viral stocks strongly increased the egg production of the flies. This experimental approach clearly showed that DCV could be considered a polymorphic virus. The phenotypic interactions between DCV and host flies varied according to parasite genotype.  相似文献   

15.
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.  相似文献   

16.
Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV‐induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity.  相似文献   

17.
Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.  相似文献   

18.
Abstract Ovipositing Asobara japonica females inject venom (containing paralysis‐inducing factors) immediately after the insertion of their ovipositors into Drosophila larvae, and lay eggs a little later. Interruption of their oviposition behaviour before egg laying causes high larval mortality in host Drosophila species, whereas normal oviposition does not. This suggests that venom of this parasitoid is toxic to larvae of these host species but its toxicity is suppressed by factor(s) provided by parasitoid females at the time of laying egg or by parasitoid embryos developing in the hosts. On the other hand, venom does not show toxicity to larvae of nonhost Drosophia species. Possible functions of venom are discussed.  相似文献   

19.
TheDrosophilaPolycomb group (PcG) of genes is required for the epigenetic regulation of a number of important developmental genes, including the homeotic (Hox) genes. The members of this gene family encode proteins that do not share sequence similarity, implying that each plays a unique role in this epigenetic repression mechanism.Polycomblike(Pcl) was the second PcG gene to be identified. We report here the isolation and characterization of a human cDNA, termedPHF1,which encodes a protein with significant sequence similarity toDrosophilaPolycomblike (PCL). The region of similarity between PHF1 and PCL includes the two PHD fingers (C4–H–C3motif), the region between them, and sequences C-terminal to the PHD fingers. PHF1 and PCL are 34% identical over this 258-residue region.PHF1was mapped to 6p21.3 by fluorescencein situhybridization. While several genetic diseases that are likely to result from developmental abnormalities map to this region,PHF1is not a clear candidate gene for any of them.  相似文献   

20.
Drosophila C virus (DCV) is a natural pathogen of Drosophila and a useful model for studying antiviral defences. The Drosophila host is also commonly infected with the widespread endosymbiotic bacteria Wolbachia pipientis. When DCV coinfects Wolbachia-infected D. melanogaster, virus particles accumulate more slowly and virus induced mortality is substantially delayed. Considering that Wolbachia is estimated to infect up to two-thirds of all insect species, the observed protective effects of Wolbachia may extend to a range of both beneficial and pest insects, including insects that vector important viral diseases of humans, animals and plants. Currently, Wolbachia-mediated antiviral protection has only been described from a limited number of very closely related strains that infect D. melanogaster. We used D. simulans and its naturally occurring Wolbachia infections to test the generality of the Wolbachia-mediated antiviral protection. We generated paired D. simulans lines either uninfected or infected with five different Wolbachia strains. Each paired fly line was challenged with DCV and Flock House virus. Significant antiviral protection was seen for some but not all of the Wolbachia strain-fly line combinations tested. In some cases, protection from virus-induced mortality was associated with a delay in virus accumulation, but some Wolbachia-infected flies were tolerant to high titres of DCV. The Wolbachia strains that did protect occurred at comparatively high density within the flies and were most closely related to the D. melanogaster Wolbachia strain wMel. These results indicate that Wolbachia-mediated antiviral protection is not ubiquitous, a finding that is important for understanding the distribution of Wolbachia and virus in natural insect populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号