首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheetahs (Acinonyx jubatus) in captivity have unusually high morbidity and mortality from infectious diseases, a trait that could be an outcome of population homogeneity or the immunomodulating effects of chronic stress. Free-ranging Namibian cheetahs share ancestry with captive cheetahs, but their susceptibility to infectious diseases has not been investigated. The largest remaining population of free-ranging cheetahs resides on Namibian farmlands, where they share habitat with domestic dogs and cats known to carry viruses that affect cheetah health. To assess the extent to which free-ranging cheetahs are exposed to feline and canine viruses, sera from 81 free-ranging cheetahs sampled between 1992 and 1998 were evaluated for antibodies against canine distemper virus (CDV), feline coronavirus (feline infectious peritonitis virus; FCoV/ FIPV), feline herpesvirus 1 (FHV1), feline panleukopenia virus (FPV), feline immunodeficiency virus (FIV), and feline calicivirus (FCV) and for feline leukemia virus (FeLV) antigens. Antibodies against CDV, FCoV/FIPV, FHV1, FPV, and FCV were detected in 24, 29, 12, 48, and 65% of the free-ranging population, respectively, although no evidence of viral disease was present in any animal at the time of sample collection. Neither FIV antibodies nor FeLV antigens were present in any free-ranging cheetah tested. Temporal variation in FCoV/FIPV seroprevalence during the study period suggested that this virus is not endemic in the free-ranging population. Antibodies against CDV were detected in cheetahs of all ages sampled between 1995 and 1998, suggesting the occurrence of an epidemic in Namibia during the time when CDV swept through other parts of sub-Saharan Africa. This evidence in free-ranging Namibian cheetahs of exposure to viruses that cause severe disease in captive cheetahs should direct future guidelines for translocations, including quarantine of seropositive cheetahs and preventing contact between cheetahs and domestic pets.  相似文献   

2.
The natural occurrence of lentiviruses closely related to feline immunodeficiency virus (FIV) in nondomestic felid species is shown here to be worldwide. Cross-reactive antibodies to FIV were common in several free-ranging populations of large cats, including East African lions and cheetahs of the Serengeti ecosystem and in puma (also called cougar or mountain lion) populations throughout North America. Infectious puma lentivirus (PLV) was isolated from several Florida panthers, a severely endangered relict puma subspecies inhabiting the Big Cypress Swamp and Everglades ecosystems in southern Florida. Phylogenetic analysis of PLV genomic sequences from disparate geographic isolates revealed appreciable divergence from domestic cat FIV sequences as well as between PLV sequences found in different North American locales. The level of sequence divergence between PLV and FIV was greater than the level of divergence between human and certain simian immunodeficiency viruses, suggesting that the transmission of FIV between feline species is infrequent and parallels in time the emergence of HIV from simian ancestors.  相似文献   

3.
Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.  相似文献   

4.
Spotted hyenas (Crocuta crocuta) are abundant predators in the Serengeti ecosystem and interact with other species of wild carnivores and domestic animals in ways that could encourage disease transmission. Hyenas also have a unique hierarchical social system that might affect the flow of pathogens. Antibodies to canine distemper virus (CDV), feline immunodeficiency virus (FIV), feline panleukopenia virus/canine parvovirus (FPLV/CPV), feline coronavirus/ feline infectious peritonitis virus (FECV/IPV), feline calicivirus (FCV), and feline herpesvirus 1 (FHV1) have been detected in other Serengeti predators, indicating that these viruses are present in the ecosystem. The purpose of this study was to determine whether spotted hyenas also had been infected with these viruses and to assess risk factors for infection. Serum samples were collected between 1993 and 2001 from 119 animals in a single clan for which behavioral data on social structure were available and from 121 hyenas ill several other clans. All animals resided in the Masai Mara National Reserve. Antibodies to CDV, FIV, FPLV/CPV, FECV/FIPV, FCV, and FHV1 were present in 47%, 3.5%, 81%, 36%, 72%, and 0.5% of study hyenas, respectively. Antibody prevalence was greater in adults for FIV and FECV/FIPV, and being a female of high social rank was a risk factor for FIV. Hyenas near human habitation appeared to be at lower risk to have CDV, FIV, and FECV/FIPV antibodies, whereas being near human habitation increased the risk for FPLV/CPV antibodies. Canine (distemper virus and FECV/FIPV antibody prevalence varied considerably over time, whereas FIV, FPLV/CPV, and FCV had a stable, apparently endemic temporal pattern. These results indicate that hyenas might play a role in the ecology of these viruses in the Serengeti ecosystem. The effect of these viruses on hyena health should be further investigated. The lower prevalence of CDV antibody-positive hyenas near human habitation suggests that reservoirs for CDV other than domestic dogs are present in the Serengeti ecosystem.  相似文献   

5.
Feline immunodeficiency virus (FIV) is a novel lentivirus that is genetically homologous and functionally analogous to the human AIDS viruses, human immunodeficiency virus types 1 and 2. FIV causes immunosuppression in domestic cats by destroying the CD4 T-lymphocyte subsets in infected hosts. A serological survey of over 400 free-ranging African and Asian lions (Panthera leo) for antibodies to FIV revealed endemic lentivirus prevalence with an incidence of seropositivity as high as 90%. A lion lentivirus (FIV-Ple) was isolated by infection of lion lymphocytes in vitro. Seroconversion was documented in two Serengeti lions, and discordance of mother-cub serological status argues against maternal transmission (in favor of horizontal spread) as a major route of infection among lions. A phylogenetic analysis of cloned FIV-Ple pol gene sequences from 27 lions from four African populations (from the Serengeti reserve, Ngorongoro Crater, Lake Manyara, and Kruger Park) revealed remarkably high intra- and interindividual genetic diversity at the sequence level. Three FIV-Ple phylogenetic clusters or clades were resolved with phenetic, parsimony, and likelihood analytical procedures. The three clades, which occurred not only together in the same population but throughout Africa, were as divergent from each other as were homologous pol sequences of lentivirus isolated from distinct feline species, i.e., puma and domestic cat. The FIV-Ple clades, however, were more closely related to each other than to other feline lentiviruses (monophyletic for lion species), suggesting that the ancestors of FIV-Ple evolved in allopatric (geographically isolated) lion populations that converged recently. To date, there is no clear evidence of FIV-Ple-associated pathology, raising the possibility of a historic genetic accommodation of the lion lentivirus and its host leading to a coevolved host-parasite symbiosis (or commensalism) in the population similar to that hypothesized for endemic simian immunodeficiency virus without pathology in free-ranging African monkey species.  相似文献   

6.
Serum samples from 14 lions (Panthera leo) from Queen Elizabeth National Park, Uganda, were collected during 1998 and 1999 to determine infectious disease exposure in this threatened population. Sera were analyzed for antibodies against feline immunodeficiency virus (FIV), feline calicivirus (FCV), feline herpesvirus 1 (feline rhinotracheitis: FHV1), feline/canine parvovirus (FPV/CPV), feline infectious peritonitis virus (feline coronavirus: FIPV), and canine distemper virus (CDV) or for the presence of feline leukemia virus (FeLV) antigens. Ten lions (71%) had antibodies against FIV, 11 (79%) had antibodies against CDV, 11 (79%) had antibodies against FCV, nine (64%) had antibodies against FHV1, and five (36%) had antibodies against FPV. Two of the 11 CDV-seropositive lions were subadults, indicating recent exposure of this population to CDV or a CDV-like virus. No lions had evidence of exposure to FeLV or FIPV. These results indicate that this endangered population has extensive exposure to common feline and canine viruses.  相似文献   

7.
Few data are available on the prevalence of feline viruses in European wildcats (Felis silvestris). Previous surveys have indicated that wildcats may be infected with the common viruses of domestic cats, apart from feline immunodeficiency virus (FIV). In the present study, 50 wildcats trapped throughout Scotland (UK) between August 1992 and January 1997 were tested for evidence of viral infection. All were negative for FIV by several serological or virological methods. By contrast, 10% of the cats were positive for feline leukemia virus (FeLV) antigen and infectious virus was isolated from 13% of a smaller subset. Of the wildcats tested for respiratory viruses, 25% yielded feline calicivirus (FCV) and although no feline herpesvirus was isolated, 16% of the samples had neutralizing antibodies to this virus. Antibodies to feline coronavirus (FCoV) were found in 6% of samples. Feline foamy virus (FFV) was an incidental finding in 33% of samples tested. This study confirms that wildcats in Scotland are commonly infected with the major viruses of the domestic cat, except for FIV.  相似文献   

8.
This case report describes a multicentric lymphoma in a 4 yr old female wildborn captive cheetah (Acinonyx jubatus) in Namibia after being housed in an enclosure adjacent to a feline leukemia virus (FeLV) infected cheetah that had previously been in contact with domestic cats. The year prior to the onset of clinical signs, the wild-born cheetah was FeLV antigen negative. The cheetah subsequently developed lymphoma, was found to be infected with FeLV, and then rapidly deteriorated and died. At necropsy, the liver, spleen, lymph nodes, and multiple other organs were extensively infiltrated with neoplastic T-lymphocytes. Feline leukemia virus DNA was identified in neoplastic lymphocytes from multiple organs by polymerase chain reaction and Southern blot analysis. Although the outcome of infection in this cheetah resembles that of FeLV infections in domestic cats, the transmission across an enclosure fence was unusual and may indicate a heightened susceptibility to infection in cheetahs. Caution should be exercised in holding and translocating cheetahs where contact could be made with FeLV-infected domestic, feral, or wild felids.  相似文献   

9.
Human SERINC5 (SER5) protein is a recently described restriction factor against human immunodeficiency virus-1 (HIV-1), which is antagonized by HIV-1 Nef protein. Other retroviral accessory proteins such as the glycosylated Gag (glycoGag) from the murine leukemia virus (MLV) can also antagonize SER5. In addition, some viruses escape SER5 restriction by expressing a SER5-insensitive envelope (Env) glycoprotein. Here, we studied the activity of human and feline SER5 on HIV-1 and on the two pathogenic retroviruses in cats, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). HIV-1 in absence of Nef is restricted by SER5 from domestic cats and protected by its Nef protein. The sensitivity of feline retroviruses FIV and FeLV to human and feline SER5 is considerably different: FIV is sensitive to feline and human SER5 and lacks an obvious mechanism to counteract SER5 activity, while FeLV is relatively resistant to SER5 inhibition. We speculated that similar to MLV, FeLV-A or FeLV-B express glycoGag proteins and investigated their function against human and feline SER5 in wild type and envelope deficient virus variants. We found that the endogenous FeLV recombinant virus, FeLV-B but not wild type exogenous FeLV-A envelope mediates a strong resistance against human and feline SER5. GlycoGag has an additional but moderate role to enhance viral infectivity in the presence of SER5 that seems to be dependent on the FeLV envelope. These findings may explain, why in vivo FeLV-B has a selective advantage and causes higher FeLV levels in infected cats compared to infections of FeLV-A only.  相似文献   

10.
The extent and progression of exposure to feline infectious peritonitis (FIP) virus in the cheetah, Acinonyx jubatus, was monitored by a world-wide serological survey with indirect fluorescent antibody titers to coronavirus. The indirect fluorescent antibody assay was validated by Western blots, which showed that all indirect fluorescent antibody-positive cheetah sera detected both domestic cat and cheetah coronavirus structural proteins. There was a poor correlation between indirect fluorescent antibody results and the presence of coronaviruslike particles in cheetah feces, suggesting that electron microscopic detection of shed particles may not be an easily interpreted diagnostic parameter for FIP disease. Low, but verifiable (by Western blots [immunoblots]) antibody titers against coronavirus were detected in eight free-ranging cheetahs from east Africa as well as from captive cheetahs throughout the world. Of 20 North American cheetah facilities screened, 9 had cheetahs with measurable antibodies to feline coronavirus. Five facilities showed patterns of an ongoing epizootic. Retrospective FIP virus titers of an FIP outbreak in a cheetah-breeding facility in Oregon were monitored over a 5-year period and are interpreted here in terms of clinical disease progression. During that outbreak the morbidity was over 90% and the mortality was 60%, far greater than any previously reported epizootic of FIP in any cat species. Age of infection was a significant risk factor in this epizootic, with infants (less than 3 months old) displaying significantly higher risk for mortality than subadults or adults. Based upon these observations, empirical generalizations are drawn which address epidemiologic concerns for cheetahs in the context of this lethal infectious agent.  相似文献   

11.
Forty-five wildcats (Felis silvestris), 17 sand cats (Felis margarita), and 17 feral domestic cats were captured in central west Saudi Arabia, between May 1998 and April 2000, with the aim to assess their exposure to feline immunodeficiency virus/puma lentivirus (FIV/PLV), feline leukaemia virus (FeLV), feline herpesvirus (FHV-1), feline calicivirus (FCV), feline coronavirus (FCoV), and feline panleukopenia virus (FPLV). Serologic prevalence in wildcats, sand cats, and feral domestic cats were respectively: 6%, 0%, 8% for FIV/PLV; 3%, 8%, 0% for FeLV; 5%, 0%, 15% for FHV-1; 25%, 0%, 39% for FCV; 10%, 0%, 0% for FCoV; and 5%, 0%, 8% for FPLV. We recorded the first case of FeLV antigenemia in a wild sand cat. Positive results to FIV/PLV in wildcats and feral cats confirmed the occurrence of a feline lentivirus in the sampled population.  相似文献   

12.
Serum samples from 18 pumas (Puma concolor), one ocelot (Leopardus pardalis), and two little spotted cats (Leopardus tigrinus) collected from free-ranging animals in Brazil between 1998 and 2004 were tested by indirect immunofluorescence (IFA) for antibodies to feline herpesvirus 1 (FHV 1), calicivirus (FCV), coronavirus (FCoV), parvo-virus (FPV), Ehrlichia canis, Anaplasma pha-gocytophilum, and Bartonella henselae. Serum samples also were tested, by Western blot and ELISA, for feline leukemia virus (FeLV) specific antibodies and antigen, respectively, by Western blot for antibodies to feline immunodeficiency virus (FIV), and by indirect ELISA for antibodies to puma lentivirus (PLV). Antibodies to FHV 1, FCV, FCoV, FPV, FeLV, FIV, PLV or related viruses, and to B. henselae were detected. Furthermore, high-titered antibodies to E. canis or a closely related agent were detected in a puma for the first time.  相似文献   

13.
A high percentage of free-ranging pumas (Felis concolor) are infected with feline lentiviruses (puma lentivirus, feline immunodeficiency virus Pco [FIV-Pco], referred to here as PLV) without evidence of disease. PLV establishes productive infection in domestic cats following parenteral exposure but, in contrast to domestic cat FIV, it does not cause T-cell dysregulation. Here we report that cats exposed to PLV oro-nasally became infected yet rapidly cleared peripheral blood mononuclear cell (PBMC) proviral load in the absence of a correlative specific immune response. Two groups of four specific-pathogen-free cats were exposed to PLV via the mucosal (oro-nasal) or parenteral (i.v.) route. All animals were PBMC culture positive and PCR positive within 3 weeks postinfection and seroconverted without exhibiting clinical disease; however, three or four oro-nasally infected animals cleared circulating proviral DNA within 3 months. Antibody titers reached higher levels in animals that remained persistently infected. PLV antigen-induced proliferation was slightly greater in mucosally inoculated animals, but no differences were noted in cytotoxic T-lymphocyte responses or cytokine profiles between groups. The distribution of virus was predominantly gastrointestinal as opposed to lymphoid in all animals in which virus was detected at necropsy. Possible mechanisms for viral clearance include differences in viral fitness required for crossing mucosal surfaces, a threshold dose requirement for persistence, or an undetected sterilizing host immune response. This is the first report of control of a productive feline or primate lentivirus infection in postnatally exposed, seropositive animals. Mechanisms underlying this observation will provide clues to containment of immunodeficiency disease and could prompt reexamination of vaccine-induced immunity against human immunodeficiency virus and other lentiviruses.  相似文献   

14.
While the importance of viral infections is well studied in domestic cats, only limited information is available on their occurence and prevalence in the European wildcat (Felis silvestris silvestris). The aim of this study was to determine the prevalence of antibodies to feline coronavirus (FCoV), calicivirus (FCV), herpesvirus (FHV), parvovirus (FPV), immunodeficiency virus (FIV), leukemia virus (FeLV), and FeLV antigenemia in 51 European wildcat sera. Samples were collected between 1996 and 1997 from wildcat populations in France, Switzerland, and Germany. Antibodies to FCoV were detected in two cats (4%) and FCoV RNA was detected in feces of one of these two cats. Antibodies to FCV, FHV and FPV were found at relatively low frequencies of 16%, 4%, and 2%, respectively. Antibodies to FIV were not detected. Although antigen and antibodies to FeLV were detected in 49%, and 75%, respectively, no evidence of FeLV-associated pathology was found. From the low prevalence of FCoV, FCV, FHV and FPV infections and from the fact that the European wildcats live solitarily, it was concluded that these viral infections do not spread readily within a population. Therefore, it may be assumed that release into the wild of European wildcats bred in captivity would not bring about a high risk of introducing of these viral infections to the free-ranging wildcats. As an exception, wildcats should be tested for absence of FIV infection before release if they were at risk to acquire this infection from domestic cats.  相似文献   

15.
The Iberian lynx (Lynx pardinus) is the most endangered felid species in the world. Lynx populations have decreased dramatically in size and distribution in the last four decades, thus becoming increasingly vulnerable to catastrophic events such as epizooties. From 1989 to 2000, serum samples were obtained from 48 free-ranging lynx captured in the Doñana National Park (DNP, n?=?31) and mountains of Sierra Morena (SM, n?=?17) in southern Spain. Samples were tested for antibodies against Toxoplasma gondii, feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), feline/canine parvovirus (FPV/CPV), feline coronavirus, feline immunodeficiency virus (FIV), feline leukaemia virus and canine distemper virus (CDV) and for FeLV p27 antigen, to document baseline exposure levels. Antibodies against T. gondii were detected in 44% of lynx, with a significantly greater prevalence in DNP (61%) than in SM (12%). In DNP, prevalence was significantly higher in adult (81%) than in juvenile and sub-adult (41%) lynx, but no such difference was observed in SM. Low prevalences (≤11%) of minimally positive titres were found for FHV-1, FCV and FPV/CPV. This, combined with the lack of evidence for exposure to CDV, FIV and FeLV, suggests that these lynx populations are naïve and might be vulnerable to a disease outbreak in the future. Because of the reduced size of lynx populations, the documented low level of genetic variation (particularly in the DNP population) coupled with the recently documented state of immune depletion in a majority of necropsied lynx, it is important to better understand the threat and potential impact that disease agents might pose for the conservation of this endangered species. Future surveillance programs must include possible disease reservoir hosts such as domestic cats and dogs and other wild carnivores.  相似文献   

16.
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.  相似文献   

17.
Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population.  相似文献   

18.
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS-like immunodeficiency disease in domestic cats. Free-ranging lions, Panthera leo, carry a chronic species-specific strain of FIV, FIV-Ple, which so far has not been convincingly connected with immune pathology or mortality. FIV-Ple, harboring the three distinct strains A, B, and C defined by pol gene sequence divergences, is endemic in the large outbred population of lions in the Serengeti ecosystem in Tanzania. Here we describe the pattern of variation in the three FIV genes gag, pol-RT, and pol-RNase among lions within 13 prides to assess the occurrence of FIV infection and coinfection. Genome diversity within and among FIV-Ple strains is shown to be large, with strain divergence for each gene approaching genetic distances observed for FIV between different species of cats. Multiple in fections with two or three strains were found in 43% of the FIV-positive individuals based on pol-RT sequence analysis, which may suggest that antiviral immunity or interference evoked by one strain is not consistently protective against infection by a second. This comprehensive study of FIV-Ple in a free-ranging population of lions reveals a dynamic transmission of virus in a social species that has historically adapted to render the virus benign.  相似文献   

19.
We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.  相似文献   

20.
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号