首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Summary Lipid is the major energy storage molecule, and protein is highly conserved when food availability is low in high- and low-intertidal individuals of Anthopleura elegantissima. Under laboratory conditions zooxanthellae were lost from anemones, and tissue carbohydrate was mobilized to support metabolic demands. Routine catabolic requirements for carbohydrate are probably met by translocated photosynthate. Substrate-specific absorption efficiencies were greater than 95% for protein and lipid, but considerably lower (10 to 60%) for carbohydrate. This pattern of absorption is directly related to very low levels of dietary carbohydrate compared to the other substrates. High-intertidal anemones absorbed more lipid than low-intertidal anemones. Integrated budgets for organic nitrogen, the first reported for any cnidarian, indicate that low-intertidal anemones require larger daily rations than high-intertidal anemones to meet their higher metabolic demands for protein. These results are considered in relation to potential importance of zooxanthellae in nutrient cycling.  相似文献   

2.
The sea anemone Anthopleura elegantissima is a common member of intertidal communities along the west coast of North America, and can experience extended periods of increased temperature during summertime low tides. Internal body temperatures of emersed individuals of A. elegantissima were monitored in a laboratory wind tunnel and in the field, and factors influencing the anemones’ thermal experience were examined. Larger body size and aggregation with conspecifics slowed body temperature increases in controlled wind tunnel conditions. In the field, anemones in the interior of an aggregation stayed cooler than those on the edges, and microhabitat features related to light exposure and surface orientation overshadowed any direct effects of body size. In the warmest month only (July), aggregations of A. elegantissima were significantly larger at the upper limit of their distribution than they were at the mid and lower limits, suggesting aggregation in high intertidal zones may be a behavioral response to desiccation and temperature stress. As this sea anemone can host multiple species of symbiotic algae with different thermal tolerances, the ability to slow body heating may affect the type of algae hosted and thus the potential contribution of this abundant anemone to primary production in the intertidal zone.  相似文献   

3.
The intertidal sea anemone Anthopleura elegantissima in the Pacific Northwest may host a single type of algal symbiont or two different algal symbionts simultaneously: zooxanthellae (Symbiodinium muscatinei) and zoochlorellae (green algae; Trebouxiophyceae, Chlorophyta). A seasonal comparison of zooxanthellate and zoochlorellate anemones showed stable symbiont population densities in summer and winter, with densities of zoochlorellae about 4 times those of zooxanthellae. Photosynthesis-irradiance curves of freshly isolated symbionts show that the productivity (P(max) cell) of freshly isolated zooxanthellae was about 2.5 times that of zoochlorellae during July; comparable rates were obtained in other months. Models of algal carbon flux show that zoochlorellae may supply the host with more photosynthetic carbon per unit anemone biomass than zooxanthellae supply. Zooxanthellate anemone tissue was 2 per thousand ((13)C) and 5 per thousand ((15)N) enriched and zoochlorellate anemone tissue was 6 per thousand ((13)C) and 8 per thousand ((15)N) enriched over their respective symbionts, suggesting that zoochlorellate anemones receive less nutrition from their symbionts than do zooxanthellate individuals. The disparity between predicted contributions from the algal carbon budgets and the stable isotopic composition suggests that short-term measures of algal contributions may not reflect actual nutritional inputs to the host. Isotopic data support the hypothesis of substantial reliance on external food sources. This additional nutrition may allow both algae to persist in this temperate intertidal anemone in spite of differences in seasonal photosynthetic carbon contributions.  相似文献   

4.
The superfamily of EF-hand proteins is comprised of a large and diverse group of proteins that contain one or more characteristic EF-hand calcium-binding domains. This study describes and characterizes a novel EF-hand cDNA, CnidEF, from the sea anemone Anthopleura elegantissima (Phylum Cnidaria, Class Anthozoa). CnidEF was found to contain two EF-hand motifs near the C-terminus of the deduced amino acid sequence and two regions near the N-terminus that could represent degenerate EF-hand motifs. CnidEF homologues were also identified from two other sea anemone species. A combination of bioinformatic and molecular phylogenetic analyses was used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein (LBP) involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium-binding protein (SARC) involved in fluorescence of the annelid worm Nereis diversicolor. Predicted structure and folding analysis revealed a close association with bioluminescent aequorin (AEQ) proteins from the hydrozoan cnidarian Aequorea aequorea. Neighbor-joining analyses grouped CnidEF within the SARC lineage along with AEQ and other cnidarian bioluminescent proteins rather than in the lineage containing calmodulin (CAM) and troponin-C (TNC).  相似文献   

5.
The lipid content of sea anemones from central California was measured over a three-year period by ether extraction. These levels were significantly above those which would be considered as solely structural, and they cycled in a manner roughly paralleling the reproductive cycle. The lipid content was shown to be independent of sex, and directly proportional to size of anemone. Animals from the thermal outfall canal of a power plant had lower levels of lipid than control animals, although these levels rose to equal control values during periods of decreased power plant activity. There was no effect of a one-month starvation on the lipid content in anemones from either site.  相似文献   

6.
Abstract. The aeolid nudibranch Aeolidia papillosa is an important predator on the sea anemone Anthopleura elegantissima , a host to two kinds of endosymbiotic algae: zooxanthellae and zoochlorellae. The possible influence of the algae on the nudibranch's predatory response to this anemone was examined in a laboratory study. In chemosensory experiments, the nudibranch detected and chose anemone scent over a seawater control, but in both chemosensory and feeding experiments showed no preference for zooxanthellate or zoochlorellate anemones. Ingestive conditioning on zooxanthellate or zoochlorellate anemones had no effect on choice of these two anemone types in chemosensory experiments. Comparisons of the productivity and photosynthetic pigments of algae obtained from nudibranch feces and from anemones show that both algae survive passage through the nudibranch gut. The productivity of fecal zooxanthellae was 1.6X greater than that of zooxanthellae freshly isolated from anemones, although the chlorophyll a content of fecal zooxanthellae was reduced. The productivity and amount of pigments were the same for zoochlorellae in nudibranch feces and freshly isolated from anemones. Comparing fecal and isolated algae, there was no significant difference in the percentage of zooxanthellae in the process of cell division. However, the percentage of dividing cells was 2.6X higher in fecal than in freshly isolated zoochlorellae (18% and 6.9% respectively). Although the endosymbiotic algae do not make their host more or less attractive to the nudibranch, this predator may play an important role in maintaining the symbiotic relationship of Anthopleura elegantissima with zooxanthellae and zoochlorellae by providing viable algae in its feces as a source for the anemone host.  相似文献   

7.
8.
At northern latitudes the sea anemones Anthopleura elegantissima and its congener A. xanthogrammica contain unidentified green chlorophytes (zoochlorellae) in addition to dinophytes belonging to the genus Symbiodinium. This dual algal symbiosis, involving members of distinct algal phyla in one host, has been extensively studied from the perspective of the ecological and energetic consequences of hosting one symbiotic type over the other. However, the identity of the green algal symbiont has remained elusive. We determined the phylogenetic position of the marine zoochlorellae inhabiting A. elegantissima by comparing sequence data from two cellular compartments, the nuclear 18S ribosomal RNA gene region and the plastid-encoded rbcL gene. The results support the inclusion of these zoochlorellae in a clade of green algae that form symbioses with animal (Anthopleura elegantissima), fungal (the lichen genus Nephroma), and seed plant (Ginkgo) partners. This clade is distinct from the Chlorella symbionts of Hydra. The phylogenetic diversity of algal hosts observed in this clade indicates a predisposition for this group of algae to participate in symbioses. An integrative approach to the study of these algae, both within the host and in culture, should yield important clues about how algae become symbionts in other organisms.  相似文献   

9.
Among temperate cnidarian symbioses, the partnership between the intertidal anemone Anthopleura elegantissima and its dinoflagellate and chlorophyte symbionts is one of the most well characterized. Biogeographic, reciprocal transplant, and physiological studies have convincingly demonstrated a relationship between environmental factors such as temperature and irradiance and the distribution of symbionts from both algal phyla. However, little is known about the fine-scale diversity or biogeographic distribution within symbiont lineages of this anemone. We used sequence information from the mitochondrial cytochrome b and chloroplast 23S ribosomal genes and restriction fragment length polymorphism data from the 18S nuclear ribosomal gene to characterize the Symbiodinium populations in tentacles clipped from 105 anemones at 14 sites along the entire California coast, spanning about 1200 km. Our results show the presence of at least three primary biogeographic regions with breaks around Cape Mendocino and Monterey Bay, each dominated by a different Symbiodinium muscatinei genotype. Sharp clines suggest limited gene flow between adjacent regions. Few sampling locations or individual anemones showed symbiont diversity at either organellar locus within the limits of our detection method, while sequence analysis of cloned nr18S polymerase chain reaction product suggests that nuclear pseudogenes may underlie intra-host diversity observed at that locus.  相似文献   

10.
We have analyzed the genetic profiles of dinoflagellate populations obtained from the Pacific coast sea anemone Anthopleura elegantissima (Brandt) at collection sites from Washington to California. Genetic differences within the symbiont populations of California anemones have been uncovered by restriction length polymorphism (RFLP) analysis of the small subunit (SSU) and large subunit (LSU) ribosomal RNA genes, and by denaturing gradient gel electrophoresis (DGGE) of the internal transcribed spacer region 2 (ITS 2). The existence of two Symbiodinium species is substantiated by sequence analysis of the variable regions V1, V2, and V3 of the SSUrDNA, which also establishes their phylogenetic relatedness to other members of the genus Symbiodinium. Anemones from Washington and Oregon harbor a single dinoflagellate species, for which we propose the name S. muscatinei sp. nov. At these northern locations, S. muscatinei either exists alone or co-occurs with the Chlorella-like green algal symbiont. Our results indicate that S. muscatinei co-occurs with a second dinoflagellate, S. californium, in mixed populations in central and southern California. We suggest that the geographic distribution of these dinoflagellates is related to the temperature cline created by latitude.  相似文献   

11.
APETx1 is a 42-amino acid toxin purified from the venom of the sea anemone Anthopleura elegantissima. This cysteine-rich peptide possesses three disulfide bridges (C4-C37, C6-C30, and C20-C38). Its pharmacological target is the Ether-a-gogo potassium channel. We herein determine the solution structure of APETx1 by use of conventional two-dimensional 1H-NMR techniques followed by torsion angle dynamics and refinement protocols. The calculated structure of APETx1 belongs to the disulfide-rich all-beta structural family, in which a three-stranded anti-parallel beta-sheet is the only secondary structure. APETx1 is the first Ether-a-gogo effector discovered to fold in this way. We therefore compare the structure of APETx1 to those of the two other known effectors of the Ether-a-gogo potassium channel, CnErg1 and BeKm-1, and analyze the topological disposition of key functional residues proposed by analysis of the electrostatic anisotropy. The interacting surface is made of a patch of aromatic residues (Y5, Y32, and F33) together with two basic residues (K8 and K18) at the periphery of the surface. We pinpoint the absence of the central lysine present in the functional surface of the two other Ether-a-gogo effectors.  相似文献   

12.
Fujii  Haruhiko 《Hydrobiologia》1991,216(1):527-532
Seasonal fluctuations in relative gonad volume and oocyte size of the sea anemone Anthopleura asiatica were examined in 3 unisexual (male) populations and one bisexual population in the Seto Inland Sea of Japan from December 1982 to December 1985. A distinct annual cycle of gonadal maturation with a peak in the summer was found in all of the populations, although they appeared to be sustained only by asexual reproduction. Spawning occured synchronously between the 2 sexes early in the fall in the bisexual population while it was one to one and a half months later in the unisexual populations.  相似文献   

13.
Species inhabiting marine environments face a wide range of environmental conditions that vary spatially across several orders of magnitude. The selective pressures that these conditions impose on marine organisms, in combination with potentially high rates of gene flow between distant populations, make it difficult to predict the extent to which these populations can locally adapt. Here, I identify how selection and gene flow influence the population genetic structure of the anemone Anthopleura elegantissima along the Pacific coast of North America. Isolation by distance is the dominant pattern across the range of this species, with a genetic break near Pt. Conception, CA. Furthermore, demographic modelling suggests that this species was historically confined to southerly latitudes before expanding northward. Outlier analyses identify 24 loci under selection (out of ~1,100), but the same analysis on simulated genetic data generated using the most likely demographic model erroneously identified the same number of loci under selection, if not more. Taken together, these results suggest that demographic processes are the dominant force shaping population genetic patterns in A. elegantissima along the Pacific coast of North America. I discuss these patterns in terms of the evolutionary history of A. elegantissima, the potential for local adaptation, and their consequences with respect to interactions with the endosymbiont Breviolum muscatinei across their geographic range.  相似文献   

14.
15.
cDNAs of the two-domain arginine kinase (AK) (contiguous dimer; denoted by 2D/WT) and its separated domains 1 and 2 (denoted by D1/WT and D2/WT) from the sea anemone Anthopleura japonicus, were cloned into the plasmid pMAL, and recombinant enzymes were expressed in E. coli as MBP fusion proteins. The kinetic parameters kcat, Ka and Kia, were determined for all three AKs. All three enzymes showed distinct AK activity, and had high affinity for arginine (Ka Arg=0.25-0.48 mM). The catalytic efficiency, calculated by kcat/Ka ArgKia ATP, of the 2D/WT enzyme (182 mM(-2)s(-1), the value for one active 40 kDa domain) was two- to three-times higher than values for either D1/WT or D2/WT (80.2 and 86.4mM(-2)s(-1), respectively), suggesting the presence of domain-domain interactions (cooperativity) in the contiguous dimer. The Kia/Ka values of the three enzymes ranged from 0.88 to 1.32, indicating that there is no strong synergism in substrate binding, as seen in typical AKs. Asp62 and Arg193, which are conserved in most AKs and play a key role in stabilizing the substrate-bound structure, are also conserved in the two domains of Anthopleura AK. We replaced Asp62 in D2/WT with Glu or Gly. The catalytic efficiency and Kia/Ka for the D62E mutant were comparable to those of D2/WT, but catalytic efficiency for the D62G mutant was decreased to 13% of that of the D2/WT with a significantly increased value of Kia/Ka (1.92), indicating that Asp62 plays an important role in the expression of AK activity.  相似文献   

16.
Outer arm dynein was purified from sperm flagella of a sea anemone, Anthopleura midori, and its biochemical and biophysical properties were characterized. The dynein, obtained at a 20S ATPase peak by sucrose density gradient centrifugation, consisted of two heavy chains, three intermediate chains, and seven light chains. The specific ATPase activity of dynein was 1.3 micromol Pi/mg/min. Four polypeptides (296, 296, 225, and 206 kDa) were formed by UV cleavage at 365 nm of dynein in the presence of vanadate and ATP. In addition, negatively stained images of dynein molecules and the hook-shaped image of the outer arm of the flagella indicated that sea anemone outer arm dynein is two-headed. In contrast to protist dyneins, which are three-headed, outer arm dyneins of flagella and cilia in multicellular animals are two-headed molecules corresponding to the two heavy chains. Phylogenetic considerations were made concerning the diversity of outer arm dyneins.  相似文献   

17.
The genes of four novel neurotoxins, named Hk2a, Hk7a, Hk8a, and Hk16a, were obtained from sea anemone Anthopleura sp. All four neurotoxins were composed of 47 amino acid residues and the variable residues among them were found in positions 14, 22, 25, and 37. To study their activities, the four toxins fused to the Escherichia coli thioredoxin were overexpressed by BL21 (DE3), cleaved off from the fusion partner, purified, and characterized with MALDI-TOF and CD assays. Contractile force studies of isolated SD atria indicated that rHk2a had the strongest and rHk7a the longest heart stimulation effect. Consequently, the Arg14, a highly conserved residue in various sea anemone neurotoxins, can be inferred to contribute to the duration but not the intensity of contraction-stimulating activity. Our work renders useful information to studies of sea anemone neurotoxins, especially to the clarification of the function of the disputative Arg14.  相似文献   

18.
We describe the cloning and analysis of genomic and cDNA copies of a gene from sea anemones that encodes a new member of the G-protein-coupled receptor family. The receptor shows similarity to previously described receptors for biogenic amines such as adrenaline, serotonin, and octopamine, as well as a variety of small molecule agonists and peptides, although we have been unable to determine which ligand is the natural agonist. Antibodies generated against the recombinant receptor protein identify a single protein with a molecular weight of 66 kDa in membrane preparations. Immunofluorescence studies using the same antibody have enabled localization of the receptor in the nervous system. Western blotting and RT-PCR analysis reveal that a homologue of this receptor is expressed in jellyfish and soft coral. We suggest that the receptor plays a role in neurotransmission in the sea anemone and other members of the phylum Cnidaria.  相似文献   

19.
The subcommissural organ (SCO) of the golden hamster (Mesocricetus auratus) was studied by conventional electron microscopy, freeze-fracture technique, zinc-iodide-osmium (ZIO) and acid phosphatase cytochemical reactions. The ultrastructure of hamster SCO cells shows a few flattened cisternae of rough endoplasmic reticulum (ER) without dilated ones in the cytoplasm. The Golgi apparatus is very well developed. Freeze-fracture studies also indicate only short profiles of flattened ER in the cytoplasm endorsing the absence of dilated ER cisternae. After the treatment with ZIO mixture, reaction products were observed over flattened cisternae of the ER and the nuclear envelope. The Golgi apparatus was also reactive toward the ZIO mixture. Acid phosphatase activities are localized in the inner one or two saccules of the Golgi apparatus and dense bodies. From these results we suggest that (1) hamster SCO cells do not accumulate secretory material in the cytoplasm in the form of discrete secretory granules or dilated cisternae of ER, and (2) hamster SCO cells may possess extremely high secretory activity or may not be actively involved in secretory function at all as in rats or other rodents.  相似文献   

20.
Five isoforms of tropomyosin, designated as TMa, TMb, TMc, TMd, and TMe, were detected in the sea anemone, Anthopleura japonica. The apparent molecular weights of these isoforms were estimated to be approximately 30 kD to 37.5 kD, and their pI values were approximately 4.55 (TMa and TMb) and 4.65 (TMc, TMd, and TMe). Although sea anemone tropomyosin isoforms have the ability to bind to rabbit skeletal muscle actin, they preferably bind to actin at higher concentrations of Mg(2+) (10-20 mM) and slightly lower pH (6.2-7.2) than those used in conventional conditions. Antigenic properties of sea anemone tropomyosin seemed to be considerably specific to each isoform. Distribution of tropomyosin isoforms in the sea anemone body was somewhat portion-specific. TMa, TMb, and TMe were detected similarly in the extracts from tentacle, oral disc, column, mouth, and pedal disc. Although TMc and TMd were detected abundantly in the tentacle extract and moderately in the column and mouth extracts, these components were not contained in the pedal disc extract and detected only faintly in the oral disc extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号