首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify subterranean termite species, we designed a pair of common primers that amplified 381-bp fragments from cDNAs encoding the endo-beta-1,4-glucanases (EGases) of Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe). cDNAs from C. formosanus and R. speratus, and genomic DNA from R. speratus, were amplified by polymerase chain reaction (PCR) by using this primer pair and then cloned and sequenced. Sequences amplified from C.formosanus cDNA displayed 97-99% identity to cDNA encoding the EGase of C. formosanus (CfEG), and 92-94% identity to cDNA encoding the EGase of R. speratus (RsEG). By contrast, cDNA from R. speratus displayed 99-100% identity to RsEG cDNA and 93-94% identity to CfEG cDNA. CfEG and RsEG cDNAs can therefore be used as markers for the identification of these termite species. This is the first report of the successful identification of termite species by using cDNA and genomic DNA sequences of termite origin.  相似文献   

2.
A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.  相似文献   

3.
4.
5.
6.
7.
8.
9.
During invasion of their plant hosts, species of the oomycete genus Phytophthora secrete glucanase inhibitor proteins (GIPs) into the plant apoplast, which bind and inhibit the activity of plant extracellular endo-beta-1,3-glucanases (EGases). GIPs show structural homology to the chymotrypsin class of serine proteases (SP) but lack proteolytic activity due to the absence of an intact catalytic triad and, thus, belong to a broader class of proteins called serine protease homologs (SPH). To study the evolutionary relationship between GIPs and functional SP, database searches were used to identify 48 GIP homologs in the P. sojae, P. ramorum, and P. infestans genomes, composing GIPs, SPH, and potentially functional SP. Analyses of P. infestans-inoculated tomato leaves showed that P. infestans GIPs and tomato EGases are present in the apoplast and form stable complexes in planta. Studies of the temporal expression of a four-membered GIP family from P. infestans (PiGIP1 to PiGIP4) further revealed that the genes show distinctly different patterns during an infection timecourse. Codon evolution analyses of GIP homologs identified several positively selected peptide sites and structural modeling revealed them to be in close proximity to rapidly evolving EGase residues, suggesting that the interaction between GIPs and EGases has the hallmarks of a coevolving molecular arms race.  相似文献   

10.
Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis‐related (PR) proteins. Endo‐β‐1,3‐glucanases (EGases) belong to the PR‐2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti‐P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR‐2 family from Vitis.  相似文献   

11.
Defensive strategies of termite soldiers are roughly classified as either mechanical, using mandibles and/or the whole head, or chemical, using frontal gland secretion. Soldiers of the genus Nasutitermes (Termitidae, Nasutitermitinae), which is one of the most derived termite genera, use only chemical defenses, and diterpene defensive secretions were suggested to be synthesized through geranylgeranyl diphosphate (GGPP). On the other hand, soldiers of the genus Reticulitermes (Rhinotermitidae, Heterotermitinae) mainly use mechanical defenses, but also use supplementary chemical defenses involving frontal gland secretions, including diterpene alcohol. In this study, to confirm whether the GGPP is used for diterpene synthesis in a representative of an earlier-branching termite lineage, the GGPP synthase gene (RsGGPPS) was identified in the rhinotermitid Reticulitermes speratus (Kolbe). The relative expression level of RsGGPPS in soldiers was three-fold higher than in workers. Furthermore, RsGGPPS gene expression was detected in epithelial class 1 gland cells around the frontal-gland reservoir. Although GGPP is used for various essential cellular roles in animals, RsGGPPS is suggested to be used not only for these essential roles but also for diterpene synthesis in order to produce defensive secretions. Chemical structures of the diterpene identified from Reticulitermes and Nasutitermes are extremely different from each other, and the two genera are phylogenetically distant from each other. Thus, these two lineages may have independently acquired the abilities of diterpene synthesis from GGPP.  相似文献   

12.
13.
14.
Summary: Modern termite phylogenetics is critically reviewed, with an emphasis on tree topologies as phylogenetic hypotheses. Studies have especially concentrated on (1) the position of Isoptera among the Dictyoptera and (2) the family group relationships within the Isoptera. The first of these problems is still controversial; although the weight of evidence now suggests that termites are nested within the cockroaches, thus making "Blattaria" as presently constituted paraphyletic. The exact position of termites within the cockroaches is uncertain, although Cryptocercus is the most plausible sister group.¶Family groups relationships are rather better resolved. Mastotermitidae is now generally accepted to be the most basal termite group. Termopsidae, Hodotermitidae and Kalotermitidae are all basal to (Termitidae + Serritermitidae + Rhinotermitidae), although their relative positions within that part of the tree are disputed. Most recent studies support a sister group relationship for Serritermitidae and (Termitidae + Rhinotermitidae). However, no study has yet unambiguously found the Rhinotermitidae monophyletic. The Termitidae are well established as monophyletic and as the most apical termite family. However, within the Termitidae the monophyly of none of the subfamilies is well established, making subfamily level analyses unreliable.¶A number of problem areas are identified: (1) poor taxon sampling is a universal problem, (2) higher taxonomic groupings are often assumed to be monophyletic a priori without adequate support, (3) datasets are collected from different taxa and character systems without consideration of the overall international effort.  相似文献   

15.
16.
F Nicol  I His  A Jauneau  S Vernhettes  H Canut    H H?fte 《The EMBO journal》1998,17(19):5563-5576
Endo-1,4-beta-D-glucanases (EGases) form a large family of hydrolytic enzymes in prokaryotes and eukaryotes. In higher plants, potential substrates in vivo are xyloglucan and non-crystalline cellulose in the cell wall. Gene expression patterns suggest a role for EGases in various developmental processes such as leaf abscission, fruit ripening and cell expansion. Using Arabidopsis thaliana genetics, we demonstrate the requirement of a specialized member of the EGase family for the correct assembly of the walls of elongating cells. KORRIGAN (KOR) is identified by an extreme dwarf mutant with pronounced architectural alterations in the primary cell wall. The KOR gene was isolated and encodes a membrane-anchored member of the EGase family, which is highly conserved between mono- and dicotyledonous plants. KOR is located primarily in the plasma membrane and presumably acts at the plasma membrane-cell wall interface. KOR mRNA was found in all organs examined, and in the developing dark-grown hypocotyl, mRNA levels were correlated with rapid cell elongation. Among plant growth factors involved in the control of hypocotyl elongation (auxin, gibberellins and ethylene) none significantly influenced KOR-mRNA levels. However, reduced KOR-mRNA levels were observed in det2, a mutant deficient for brassinosteroids. Although the in vivo substrate remains to be determined, the mutant phenotype is consistent with a central role for KOR in the assembly of the cellulose-hemicellulose network in the expanding cell wall.  相似文献   

17.
The families Termitidae and Rhinotermitidae are the most evolved and diverse groups of the social insects, termites (Order Isoptera), showing elaborated morphology and complex behavior. Molecular phylogeny of termites with the emphasis on these families was examined by Bayesian and maximum-likelihood analyses based on DNA sequence of mitochondrial cytochrome oxidase II (COII) gene of 31 genera sampled in Asia (mainly Thailand and Japan) along with those reported previously. Termitidae was monophyletic and originated from within polyphyletic Rhinotermitidae. Among the four subfamilies of Termitidae, Macrotermitinae was monophyletic suggesting a single common origin of fungus-growing habit characteristic for this subfamily, and was placed in the basal position in the family. A group consisting of other subfamilies Termitinae and Nasutitermitinae, though some important groups were still untouched, was the most apical but neither Termitinae nor Nasutitermitinae formed a monophyletic lineage. It was implied that, as defense systems of the soldier castes, the appearance of snapping mandibles has occurred at a single event, but the development of nasus for chemical secretion has probably not. Our tree provides some evidence concerning contradictions in the previously proposed phylogeny of termites.  相似文献   

18.
19.
Plant endo-beta-1,3-glucanases (EGases) degrade the cell wall polysaccharides of attacking pathogens and release elicitors of additional plant defenses. Isozymes EGaseA and EGaseB of soybean differ in susceptibility to a glucanase inhibitor protein (GIP1) produced by Phytophthora sojae, a major soybean pathogen. EGaseA, the major elicitor-releasing isozyme, is a high-affinity ligand for GIP1, which completely inhibits it, whereas EGaseB is unaffected by GIP1. We tested for departures from neutral evolution on the basis of partial sequences of EGaseA and EGaseB from 20 widespread accessions of Glycine soja (the wild progenitor of soybean), from 4 other Glycine species, and across dicotyledonous plants. G. soja exhibited little intraspecific variation at either locus. Phylogeny-based codon evolution models detected strong evidence of positive selection on Glycine EGaseA and weaker evidence for selection on dicot EGases and Glycine EGaseB. Positively selected peptide sites were identified and located on a structural model of EGase bound to GIP1. Positively selected sites and highly variable sites were found disproportionately within 4.5 angstroms of bound GIP1. Low variation within G. soja EGases, coupled with positive selection in both Glycine and dicot lineages and the proximity of rapidly evolving sites to GIP1, suggests an arms race involving repeated adaptation to pathogen attack and inhibition.  相似文献   

20.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号