首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Copper accumulation and induction of DNA strand breaks were investigated in the brain of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson disease that is a heritable disease of copper accumulation and copper toxicity in the liver, kidney and brain. Copper contents in the brain of LEC rats increased from 20 weeks of age and were approximately 3.5 to 6 folds higher than those in the brain of WKAH rats at 24 weeks of age. Hepatic copper contents in LEC rats increased from 4 to 12 weeks of age in an age-dependent manner, and then decreased from 16 to 20 weeks of age. Thus, we consider that copper accumulated in the liver was released from severely damaged hepatocytes and deposited in the brain, although copper contents in the brain were 1/20-fold lower than those in the liver. We also evaluated the amounts of DNA single-strand breaks (SSBs) in the brain by comet analysis. The proportions of nuclei in the cerebrum and cerebellum without DNA damage decreased, and nuclei with severe DNA damage appeared in LEC rats at 24 weeks of age. The comet scores of cerebrum and cerebellum cells significantly increased in LEC rats and were significantly higher than those in WKAH rats at 24 weeks of age. The results show that SSBs in LEC rat brain cells are induced at a lower concentration of copper than are SSBs in hepatic cells.  相似文献   

2.
The effect of dietary zinc (Zn) supplementation on copper (Cu)-induced liver damage was investigated in Long-Evans Cinnamon rats (LEC), a model for Wilson's disease (WD). Four-week-old LEC (N=64) and control Long-Evans (LE) (N=32) female rats were divided into two groups; one group was fed with a Zn-supplemented diet (group I) and the other was given a normal rodent diet (group II). LEC rats were killed at 6, 8, 10, 12, 18, and 20 wk of age; the LE control rats were killed at 6, 12, 18, and 20 wk of age. Cu concentration in the liver was reduced in LEC rats fed the Zn-supplemented diet compared with LEC rats on the normal diet between 6 and 18 wk of age. Metallothionein (MT) concentration in the livers of LEC rats in group I increased between 12 and 20 wk of age, whereas hepatic MT concentration in LEC rats from group II decreased after 12 wk. Hepatocyte apoptosis, as determined by TUNEL, was reduced in Zn-supplemented LEC rats at all ages. Cholangiocellular carcinoma was observed only in LEC rats in group II at wk 20. These results suggest that Zn supplementation can reduce hepatic Cu concentration and delay the onset of clinical and pathological changes of Cu toxicity in LEC rats. Although the actual mechanism of protection is unknown, it could be explained by sequestration of dietary Cu by intestinal MT, induced by high dietary Zn content.  相似文献   

3.
Copper (Cu), iron (Fe), zinc (Zn) and manganese (Mn) levels in organs of LEC rats (Long-Evans rats with a cinnamon-like coat color), which develop spontaneous jaundice with hereditary hepatitis, were determined by instrumental neutron activation analysis method. Unusual accumulations of Cu in the liver of LEC rats were found, depending on the age of the animals, the metal concentration being more than approximately 20-40 times those of normal LEA rats (Long-Evans rats with an agouti coat color). Fe and Zn were also accumulated, in addition to Cu, significantly in the LEC rats. The unusual Cu accumulations in the liver of LEC rats were associated with the induction of metallothionein, estimated by radioimmunoassay method, in the liver of LEC rats, rather than that of superoxide dismutase, estimated by electron spin resonance -spin trapping method. These findings suggest that the unusual Cu accumulation in LEC rats is involved in the development of jaundice, hepatic injury and hepatocellular carcinoma.  相似文献   

4.
To confirm and extend our previous microspectrophotometric observations of 30-week-old male Long-Evans Cinnamon (LEC) rats, an animal model of human Wilson's disease, we analyzed the porphyrin patterns of the organs, urine, and plasma of LEC rats. Abnormal accumulation of porphyrins, especially highly carboxylated porphyrins (uro- and heptaporphyrin), in the kidneys and liver was seen in male and female LEC rats aged 30 weeks and also in 10-week-old rats, before the onset of spontaneous hepatic dysfunction. Accumulation of copper and iron in the kidneys was not observed in the 10-week-old rats. Massive accumulation of porphyrins was observed only in the kidneys of the 30-week-old male LEC rat, indicating that this symptom is related to sex and age. Renal accumulation of porphyrins was reflected in the rate of urinary porphyrin excretion. Hepatic accumulation of porphyrins appeared to be independent of sex and age. These results indicate that neither renal nor hepatic porphyrin accumulation is the result of renal deposition of metals or of spontaneous hepatic dysfunction and that porphyrinuria in the LEC rat is closely related to the renal accumulation of porphyrins. In contrast to these organs, a reduction in the porphyrin levels was observed in the brain of the LEC rat. This was independent of sex and age. The present work stresses the existence of an abnormal heme metabolism in the LEC rat, and thus, the necessity to study the heme metabolism in human Wilson's disease is strongly suggested.  相似文献   

5.
Behavioral functions of Wistar and Long-Evans Cinnamon (LEC) rats, Wilson's disease animal model, were compared by measuring the open-field, acoustic startle reflex and prepulse inhibition (PPI), and shuttle-box avoidance learning tests with or without oral supplementation with copper or D-penicillamine, copper chelator. All of the LEC rats, irrespective of the treatment, exhibited higher locomotor activity, a decreased habituation to startle response or a lower PPI, compared with Wistar rats. The copper content of all brain regions examined, except for the medulla oblongata of LEC rats, was significantly lower than those in Wistar rats. Besides, in the region of the striatum and the nucleus accumbens of the LEC rats, lower content of norepinephrine, and higher content of dopamine and serotonin were observed compared with Wistar rats. Although copper supplementation did not affect the brain copper content, it reduced the PPI in both Wistar and LEC rats. In contrast, D-penicillamine supplementation decreased both the brain copper content and locomotor activity, and enhanced the startle amplitude only in Wistar rats. These findings suggest that an imbalance in copper homeostasis affects monoamine metabolism and behavioral functions.  相似文献   

6.
A mutant strain with defective thymic selection of the Long-Evans Cinnamon (LEC) rat was found to spontaneously develop inflammatory bowel disease (IBD)-like colitis. The secretion of Th1-type cytokines including IFN-gamma and IL-2 from T cells of mesenteric lymph node cells (MLNs) and lamina propria mononuclear cells, but not spleen cells, in LEC rats was significantly increased more than that of the control Long-Evans Agouti rats through up-regulated expression of T-bet and phosphorylation of STAT-1 leading to NF-kappaB activation. In addition, the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells of the thymus, MLNs, and lamina propria mononuclear cells from LEC rats was significantly reduced, comparing with that of the control rats. Moreover, bone marrow cell transfer from LEC rats into irradiated control rats revealed significantly reduced CD25(+)Foxp3(+) Treg cells in thymus, spleen, and MLNs compared with those from control rats. Indeed, adoptive transfer with T cells of MLNs, not spleen cells, from LEC rats into SCID mice resulted in the development of inflammatory lesions resembling the IBD-like lesions observed in LEC rats. These results indicate that the dysfunction of the regulatory system controlled by Treg cells may play a crucial role in the development of IBD-like lesions through up-regulated T-bet, STAT-1, and NF-kappaB activation of peripheral T cells in LEC rats.  相似文献   

7.
Wilson's disease (WD) is an inherited disorder, characterized by selective copper deposition in liver and brain, chronic hepatitis and extra-pyramidal signs. In this study, we investigated changes of biochemical markers of oxidative stress and apoptosis in liver, striatum and cerebral cortex homogenates from Long-Evans Cinnamon (LEC) rats, a mutant strain isolated from Long Evans (LE) rats, in whom spontaneous hepatitis develops shortly after birth. LEC and control (LE) rats at 11 and 14 weeks of age were used. We determined tissue levels of glutathione (GSH/GSSG ratio), lipid peroxides, protein-thiols (P-SH), nitric oxide metabolites, activities of caspase-3 and total superoxide-dismutase (SOD), striatal levels of monoamines and serum levels of hepatic amino-transferases. We observed a decrease of protein-thiols, GSH/GSSG ratio and nitrogen species associated to increased lipid peroxidation in the liver and striatum - but not in the cerebral cortex - of LEC rats, accompanied by dramatic increase in serum amino-transferases and decrease of striatal catecholamines. Conversely, SOD and caspase-3 activity increased consistently only in the cortex of LEC rats. Hence, we assume that enhanced oxidative stress may play a central role in the cell degeneration in WD, at the main sites of copper deposition, with discrete pro-apoptotic conditions developing in distal areas.  相似文献   

8.
The effects of treatment with trientine, a specific copper-chelating agent, on the accumulation of copper and induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson's disease. Copper accumulated in the kidneys of LEC rats in an age-dependent manner from 12 to 18 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, renal copper contents did not increase and were maintained at the same levels as those in 4-week-old LEC rats. Estimation of the amounts of DNA single-strand breaks (SSBs) by comet assay showed that SSBs of DNA were induced in a substantial population of LEC rat renal cortex cells around 12 weeks of age and that the amounts of SSBs increased in an age-dependent manner from 12 to 18 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, the observed number of cells with DNA damage decreased, suggesting that induction of SSBs of DNA was inhibited and/or SSBs were repaired during the period of treatment with trientine. The results show that SSBs of DNA in LEC rat kidney cells are induced prior to occurrence of clinical signs of hepatic injury and that treatment of LEC rats with trientine decreases the number of DNA strand breaks.  相似文献   

9.
Effects of treatment with trientine, a specific copper-chelating agent, on accumulation of copper and induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson's disease. Copper accumulated in the livers of LEC rats in an age-dependent manner from 4 to 13 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, hepatic copper contents did not increase and were maintained at the same levels as those in 10-week-old LEC rats. When the amounts of DNA single-strand breaks (SSBs) were estimated by a comet assay, SSBs of DNA were induced in a substantial population of LEC rat hepatic cells around 8 weeks of age and the amounts of SSBs increased in an age-dependent manner from 8 to 15 weeks of age. When LEC rats were treated with trientine from 10 weeks of age, the observed number of cells with DNA damage decreased dramatically, suggesting that induction of SSBs of DNA was inhibited and/or SSBs were repaired during the period of treatment with trientine. The results show that treatment of LEC rats with trientine decreases the number of DNA strand breaks observed, although copper contents remain high in the liver.  相似文献   

10.
1. Total cellular proteins from the livers of 4-, 16- and 52-week-old hepatitis- and hepatoma-predisposed Long-Evans Cinnamon (LEC) rats were compared to those from the livers of the corresponding control rats [Long-Evans Agouti (LEA) rats] by two-dimensional gel electrophoresis. 2. A polypeptide, p50/7.2 (molecular weight x 10(-3)/isoelectric point) was only found in the LEC rats, and the p43/6.4 component was greater and the p51/6.8 component was less in the LEC rats than in the LEA rats during aging. 3. A polypeptide, p29/6.8, was dramatically greater in 4-week-old LEC rats than in 4-week-old LEA rats. 4. By sequencing and Western blotting analysis, the marked differences in the level of the p29/6.8 component were found to be due to carbonic anhydrase III.  相似文献   

11.
It has been reported that the transport function for organic anions on the kidney is maintained in multidrug resistance-associated protein 2 (Mrp2)-deficient rats. Different from Mrp2-deficient rats, Long-Evans Cinnamon (LEC) rats have impaired urinary excretion of Mrp2-substrate, phenolsulfonphthalein (PSP). PSP is transported by the potential-sensitive urate transport system in rat brush-border membranes. We analyzed the function of PSP transport system in LEC rats. Unlike Long-Evans Agouti (LEA) rats, the initial uptake of PSP and urate into the renal brush-border membrane vesicles of LEC rats were not significantly enhanced in the presence of positive intravesicular potential, suggesting that the potential-sensitive urate transport system is impaired in LEC rats. LEC rats should be useful for elucidating the potential-sensitive urate transport system in rats at the molecular level.  相似文献   

12.
It has been reported that the transport function for organic anions on the kidney is maintained in multidrug resistance-associated protein 2 (Mrp2)-deficient rats. Different from Mrp2-deficient rats, Long-Evans Cinnamon (LEC) rats have impaired urinary excretion of Mrp2-substrate, phenolsulfonphthalein (PSP). PSP is transported by the potential-sensitive urate transport system in rat brush-border membranes. We analyzed the function of PSP transport system in LEC rats. Unlike Long-Evans Agouti (LEA) rats, the initial uptake of PSP and urate into the renal brush-border membrane vesicles of LEC rats were not significantly enhanced in the presence of positive intravesicular potential, suggesting that the potential-sensitive urate transport system is impaired in LEC rats. LEC rats should be useful for elucidating the potential-sensitive urate transport system in rats at the molecular level.  相似文献   

13.
Superoxide dismutase (SOD) activity was measured in the brain and liver of 24–26- and 3-month-old rats. No significant age-related differences in Cu/Zn-SOD activity were found in any of the tissues studied. A small but significant increase in total SOD activity was observed in the whole brain (10-20%), cerebral cortex (11%), and hypothalamus (18%) of old rats, whereas a much more important increase in Mn-SOD activity was found in the whole brain (48%), cerebral cortex (70%), striatum (60%), and hypothalamus (30%). The increase of Mn-SOD activity in the brain of old rats suggests the enzyme may play an important role in the process of aging. Mn-SOD is found only in the mitochondrion, which could be an important site of oxygen free radical production, and a significant increase in the enzyme activity was also found in the lung of hypoxic rats. A significant decrease in total SOD and Mn-SOD activity was observed in the liver of old rats. Preliminary experiments in 23–24-month-old mice similarly showed an increase and a decrease in total SOD and Mn-SOD activity, respectively, in the whole brain and liver. These results suggest that the regulatory mechanisms of Mn-SOD in the brain and liver vary differentially with age.  相似文献   

14.
Effects of accumulation of copper and iron on induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats that spontaneously develop fulminant hepatitis. Copper and iron accumulated in the liver of LEC rats in an age-dependent manner from 4 to 15 weeks. Low-iron diet prevented the accumulation of iron in the liver, but did not prevent accumulation of copper. The amounts of DNA strand breaks that were estimated by comet assay in the liver cells of rats fed standard diet increased with age from 4 to 15 weeks. No significant differences were observed in the proportions of LEC rat liver cells without tail and the average lengths of tail momentum in the comet images between LEC rats that had been fed standard MF diet and low-iron diet. These results support the idea that accumulation of iron is not directly associated with the induction of DNA damage in the liver cells of LEC rats.  相似文献   

15.
Copper toxicosis can occur in the absence of biliary copper excretion. To demonstrate whether biliary copper excretion capacity is correlated with hepatic mass and ATP7B function, we undertook studies in intact animals. Copper-histidine was injected intrasplenically after baseline bile collection, followed by measurement of copper excretion in Long-Evans Cinnamon (LEC) rats lacking atp7b function and in normal, syngeneic Long-Evans Agouti (LEA) rats. The basal biliary copper excretion was very low in LEC rats compared with LEA rats, 8+/-4 and 37+/-18 ng copper/min, respectively; p<0.05. After addition of copper, copper excretion increased significantly (by two- to five-fold) in LEA rats during the 30 minute study period, whereas LEC rats showed only a slight and transient increase in copper excretion. After one-third and two-thirds partial hepatectomy immediately before copper loading, copper excretion decreased progressively. The studies indicate that biliary copper excretion depends on hepatocyte mass and ATP7B gene function. Analysis of copper excretion with our non-radioactive method will facilitate testing of novel therapies and pathophysiological mechanisms in copper toxicity.  相似文献   

16.
The Long-Evans Cinnamon (LEC) rats accumulate excess copper (Cu) in the liver in a manner similar to patients with Wilson's disease (WD) and spontaneously develop acute hepatitis with severe jaundice. Although hydroxyl radicals (*OH) have been proposed to be a cause of hepatitis by the accumulation of Cu, it is not clear whether or not *OH can be produced in the liver of hepatitic LEC rats in vivo and also can be involved in the onset of hepatitis. In the present study, *OH production in plasma and liver of hepatitic LEC rats was quantified by trapping *OH with salicylic acid (SA) as 2, 3-dihydroxybenzoic acid (2, 3-DHBA). The ratios of 2, 3-DHBA/SA were significantly higher in plasma and liver of hepatitic LEC rats than those of Wistar rats and LEC rats showing no signs of hepatitis. Furthermore, the ratios of 2, 3-DHBA/SA in plasma and liver of hepatitic LEC rats were almost the same as those of Wistar rats treated orally with CuSO(4) (0.5 mmol/kg) 2 h before acetylsalicylic acid (ASA) injection. We also evaluated the protective effects of D-mannitol (a *OH scavenger) treatment against acute hepatitis in LEC rats. D-mannitol (500 mg/kg) was administered intraperitoneally to 10-week-old LEC rats for 3 weeks. D-mannitol treatment suppressed the increases in serum aspartate aminotransferase activity and total bilirubin concentration. In addition, D-mannitol treatment significantly reduced hepatic mitochondrial lipid peroxidation, which is thought to be important in the pathogenesis of Cu-induced hepatotoxicity. These observations suggest that accelerated generation of *OH catalyzed by free Cu in the liver may, at least in part, play a role in the pathogenesis of acute hepatitis in LEC rats.  相似文献   

17.
Long-Evans Cinnamon (LEC) rats exhibit a genetic defect in Atp7b gene, which is homologous to the human Wilson's disease gene, resulting in an inability to mobilize copper from the liver. This study was undertaken to gain insight into the relationship between liver copper accumulation and plasma lipid profile, circulating lipoprotein composition, hepatic sterol metabolism and biliary lipid secretion rates in 12-week-old LEC rats compared to control Long-Evans rats. Concomitant with hepatic copper deposition, LEC rats displayed increased content of triglycerides (TGs), free cholesterol (FC) and cholesteryl ester (CE) in the liver. Hepatic concentrations of malondialdehyde (MDA), an index of lipid peroxidation were also significantly elevated in LEC rats (50%). This steatosis was associated with aberrant microsomal apolipoprotein (apo) B-100 and microsomal triglyceride transfer protein (MTP) content, hypotriglyceridemia, hypocholesterolemia and abnormalities in both circulating lipoprotein composition and size. Atypical hepatobiliary sterol metabolism was established by the assessment of the activity of key intracellular enzymes for cholesterol homeostasis, which demonstrated, with respect to controls, a 40% reduction in 3-hydroxy-3-methylglutaryl coenzyme A reductase, a 30% reduction in cholesterol 7alpha-hydroxylase, and a 54% reduction in acyl CoA:cholesterol acyltransferase. During a 6-h biliary drainage, a decline in the bile acid output was recorded and might be linked to the low protein expression of the bile salt export pump (BSEP or ABCB11). Our data emphasize the crucial role of copper balance in hepatic sterol homeostasis and lipoprotein metabolism in LEC rats. Additional studies are needed to delineate the mechanisms of these disorders.  相似文献   

18.
Chronic inflammation and oxidative stress are arguably associated with an increased risk of cancer. Certain diseases that are characterized by oxyradical overload, such as Wilson’s disease (WD), have also been associated with a higher risk of liver cancer. The Long-Evans Cinnamon (LEC) rat, an animal model for WD, is genetically predisposed to the spontaneous development of liver cancer and has been shown to be very useful for studying the mechanisms of inflammation-mediated spontaneous carcinogenesis. Endonuclease III (Nth1) plays a significant role in the removal of oxidative DNA damage. Nth1 and a tumor suppressor gene Tuberous sclerosis 2 (Tsc2) are bi-directionally regulated in humans, mice, and rats by a common minimal promoter containing two Ets-binding sites (EBSs). In this study, we examined the expression of Nth1 and Tsc2 genes during disease progression in the LEC rat liver. During the period of acute hepatitis (16–17 weeks), we observed decreased Nth1 and Tsc2 mRNA levels and a continued decrease of the Tsc2 gene in 24 weeks in LEC rats, while the effect was minimal in Long-Evans Agouti (LEA) rats. This reduction in the mRNA levels was due to the reduced binding of EBSs in the Nth1/Tsc2 promoter. Increase in protein oxidation (carbonyl content) during the same time period (16–24 weeks) may have an effect on the promoter binding of regulatory proteins and consequent decrease in Nth1 and Tsc2 gene expressions during tumorigenesis.  相似文献   

19.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, was removed with ammonium tetrathiomolybdate (TTM), and the fate of the Cu complexed with TTM and mobilized from the liver was determined. TTM was injected intravenously as a single dose of 2, 10 or 50 mg TTM/kg body weight into LEC and Wistar (normal Cu metabolism) rats, and then the concentrations of Cu and molybdenum (Mo) in the bile and plasma were monitored with time after the injection. In Wistar rats, most of the Mo was excreted into the urine, only a small quantity being excreted into the bile, while Cu excreted into the urine decreased. However, in LEC rats, Cu and Mo were excreted into the bile and blood, and the bile is recognized for the first time as the major route of excretion. The Cu excreted into both the bile and plasma was accompanied by an equimolar amount of Mo. The relative ratio of the amounts of Cu excreted into the bile and plasma was 40/60 for the low and high dose groups, and 70/30 for the medium dose group. The systemic dispositions of the Cu mobilized from the liver and the Mo complexed with the Cu were also determined for the kidneys, spleen and brain together with their urinal excretion. Although Mo in the three organs and Cu in the kidneys and spleen were increased or showed a tendency to increase, Cu in the brain was not increased at all doses of TTM.  相似文献   

20.
Tetrathiomolybdate (TTM) is a powerful and selective copper (Cu) chelator that is used as a therapeutic agent for Wilson disease. TTM is the sole agent that can remove Cu bound to metallothionein (MT) in the livers of Long-Evans rats with a cinnamon-like coat color (LEC rats). However, the administration of excess TTM causes the deposition of Cu and molybdenum (Mo) in the liver. In the present study, the effect of hepatic glutathione (GSH) depletion on the removal of Cu from the livers of LEC rats was evaluated to establish an effective therapy by TTM. Pretreatment with l-buthionine sulfoximine (BSO), a depletor of GSH in vivo, reduced the amounts of Cu and Mo excreted into both the bile and the bloodstream, and increased the amounts of Cu and Mo deposited in the livers of LEC rats in the form of an insoluble complex 4 h after the TTM injection. The results suggest that GSH depletion creates an oxidative environment in the livers of LEC rats, and the oxidative environment facilitates the insolubilization of Cu and Mo in the livers of LEC rats after the TTM injection. Therefore, the effect of TTM on the removal of Cu from the liver was reduced in the oxidized condition. Wilson disease patients and LEC rats develop liver injury caused by oxidative damage. From a clinical viewpoint, increasing in the GSH concentration is expected to enhance the effect of TTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号