共查询到20条相似文献,搜索用时 9 毫秒
1.
A J Pierik W R Hagen J S Redeker R B Wolbert M Boersma M F Verhagen H J Grande C Veeger P H Mutsaers R H Sands 《European journal of biochemistry》1992,209(1):63-72
The periplasmic Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough) contains three iron-sulfur prosthetic groups: two putative electron transferring [4Fe-4S] ferredoxin-like cubanes (two F-clusters), and one putative Fe/S supercluster redox catalyst (one H-cluster). Combined elemental analysis by proton-induced X-ray emission, inductively coupled plasma mass spectrometry, instrumental neutron activation analysis, atomic absorption spectroscopy and colorimetry establishes that elements with Z > 21 (except for 12-15 Fe) are present in 0.001-0.1 mol/mol quantities, not correlating with activity. Isoelectric focussing reveals the existence of multiple charge conformers with pI in the range 5.7-6.4. Repeated re-chromatography results in small amounts of enzyme of very high H2-production activity determined under standardized conditions (approximately 7000 U/mg). The enzyme exists in two different catalytic forms: as isolated the protein is 'resting' and O2-insensitive; upon reduction the protein becomes active and O2-sensitive. EPR-monitored redox titrations have been carried out of both the resting and the activated enzyme. In the course of a reductive titration, the resting protein becomes activated and begins to produce molecular hydrogen at the expense of reduced titrant. Therefore, equilibrium potentials are undefined, and previously reported apparent Em and n values [Patil, D. S., Moura, J. J. G., He, S. H., Teixeira, M, Prickril, B. C., DerVartanian, D. V., Peck, H. D. Jr, LeGall, J. & Huynh, B.-H. (1988) J. Biol. Chem. 263, 18,732-18,738] are not thermodynamic quantities. In the activated enzyme an S = 1/2 signal (g = 2.11, 2.05, 2.00; 0.4 spin/protein molecule), attributed to the oxidized H cluster, exhibits a single reduction potential, Em,7 = -307 mV, just above the onset potential of H2 production. The midpoint potential of the two F clusters (2.0 spins/protein molecule) has been determined either by titrating active enzyme with the H2/H+ couple (E,m = -330 mV) or by dithionite-titrating a recombinant protein that lacks the H-cluster active site (Em,7.5 = -340 mV). There is no significant redox interaction between the two F clusters (n approximately 1). 相似文献
2.
Cloning and sequencing of the gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough 总被引:1,自引:0,他引:1
Abstract The gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough (148 amino acid residues), the first flavoprotein for which a three-dimensional structure has been determined, was cloned with the use of two synthetic oligonucleotides, designed to recognize the coding sequence for amino acid residues 11–19 and 98–103, respectively. The two oligonucleotides were used to screen a library of 900 λ-clones of the D. vulgaris chromosome. A single clone, λFL1, reacting with both probes was isolated. The entire structural gene for flavodoxin is contained in the 15 kb insert of λFL1 as found by nucleic acid sequencing. The codon usage in the flavodoxin gene is strongly biased towards G or C in the third codon position. A table in which codon usage information from all genes of D. vulgaris sequenced to date is combined is presented and should facilitate further gene cloning with oligonucleotide probes. 相似文献
3.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way. 相似文献
4.
H J Grande A van Berkel-Arts J Bregh K van Dijk C Veeger 《European journal of biochemistry》1983,131(1):81-88
Hydrogenase of Desulfovibrio vulgaris shows nonlinear kinetics in hydrogen production with both the natural electron carrier, cytochrome c3, and the artificial donor, methyl viologen semiquinone. Increasing concentrations of salt progressively inhibit the hydrogen production, as do increasing amounts of dimethylsulfoxide (Me2SO). Hydrogen consumption activity does not change up to 30% (v/v) of Me2SO. Preincubation in Me2SO up to 55% (v/v) does not affect the hydrogen uptake or production. The production activity of the enzyme shows an optimum around pH 6. When plotted as a function of redox potential the activity can be fitted to a Nernst equation with n = 1. Midpoint potentials calculated at various values follow approximately the hydrogen electrode to pH 6. Thereafter, there is a shift of about 40 mV to higher redox potentials. 相似文献
5.
Cloning, nucleotide sequence, and expression of the flavodoxin gene from Desulfovibrio vulgaris (Hildenborough) 总被引:3,自引:0,他引:3
The gene coding for the flavodoxin protein from Desulfovibrio vulgaris (Hildenborough) has been identified, cloned, and sequenced. DNA fragments containing the flavodoxin gene were identified by hybridization of a mixed synthetic heptadecanucleotide probe to Southern blots of SalI-digested genomic DNA. The nucleotide sequences of the probe were derived from the published protein primary structure (Dubourdieu, M., LeGall, J., and Fox, J. L. (1973) Biochem. Biophys. Res. Commun. 52, 1418-1425). The same oligonucleotide probe was used to screen libraries (in pUC19) containing size-selected SalI fragments. One recombinant, carrying a 1.6-kilobase (kb) insert which strongly hybridizes to the probe, was found to contain a nucleotide sequence which codes for the first 104 residues of the amino-terminal portion of the flavodoxin protein sequence but lacked the remainder of the gene. Therefore, a PstI restriction fragment from this clone was used as a probe to isolate the entire gene from a partial Sau3AI library in Charon 35. Of the plaques which continued to hybridize strongly to this probe through repeated screenings, one recombinant, containing a 16-kb insert, was further characterized. The entire flavodoxin gene was localized within a 1.4-kb XhoI-SacI fragment of this clone. The complete nucleotide sequence of the structural gene for the flavodoxin protein from Desulfovibrio vulgaris and flanking sequences which may include promoter and regulatory sequences are reported here. The cloned flavodoxin gene was placed behind the hybrid tac promoter for overexpression of the protein in Escherichia coli. Modification to the 5'-end of the gene, including substitutions at the second codon, were required to obtain high levels of expression. The expressed recombinant flavodoxin protein is isolated from E. coli cells as the holoprotein with physical and spectral properties similar to the protein isolated from D. vulgaris. To our knowledge, this is the first example of the expression of a foreign flavodoxin gene in E. coli using recombinant DNA methods. 相似文献
6.
A preliminary endonuclease restriction map of a bacteriophage isolated from Desulfovibrio vulgaris has been established. BamHI cleaved whole phage DNA into four fragments while HindIII cut the same DNA into seven fragments. Mapping studies succeeded in linking the four BamHI fragments into two DNA segments; however, no linkage between the two segments was detected. These data imply that two phages were induced from cultures of D. vulgaris and that the two segments represented the DNA from these phages. Support for this hypothesis came from size approximation of restriction enzyme fragments, electron micrographs, and density gradients. 相似文献
7.
A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). 总被引:2,自引:0,他引:2 下载免费PDF全文
H L Lumppio N V Shenvi R P Garg A O Summers D M Kurtz Jr 《Journal of bacteriology》1997,179(14):4607-4615
8.
Abstract Periplasmic hydrogenase from Desulfovibrio vulgaris (Hildenborough) was extracted according to the method of van der Westen [8] and the effect of trace minerals on the extractability of this enzyme was investigated. The final growth yields in the presence or absence of trace minerals were the same; however, the growth was much faster and the amount of periplasmic hydrogenase extracted was significantly lower in the presence of trace minerals. Polyacrylamide gel electrophoresis showed the presence of 2 hydrogenases in D. vulgaris , one soluble and the other possibly membrane-bound. 相似文献
9.
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine. 相似文献
10.
Peculiar attributes revealed by sequencing the genome of Desulfovibrio vulgaris Hildenborough are analyzed, particularly in relation to the presence of a phosphotransferase system (PTS). The PTS is a typical bacterial carbohydrate transport system functioning via group translocation. Novel avenues for investigations are proposed emphasizing the metabolic diversity of D. vulgaris Hildenborough, especially the likely utilization of mannose-type sugars. Comparative analysis with PTS from other Gram-negative and Gram-positive bacteria indicates regulatory functions for the PTS of D. vulgaris Hildenborough, including catabolite repression and inducer exclusion. Chemotaxis towards PTS substrates is considered. Evidence suggests that this organism may not be a strict anaerobic sulfate reducer typical of the ocean, but a versatile organism capable of bidirectional transmigration and adaptation to both water and terrestrial environments. 相似文献
11.
Voordouw G 《Journal of bacteriology》2002,184(21):5903-5911
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, use the reduction of sulfate as a sink for electrons liberated in oxidation reactions of organic substrates. The rate of the latter exceeds that of sulfate reduction at the onset of growth, causing a temporary accumulation of hydrogen and other fermentation products (the hydrogen or fermentation burst). In addition to hydrogen, D. vulgaris was found to produce significant amounts of carbon monoxide during the fermentation burst. With excess sulfate, the hyd mutant (lacking periplasmic Fe-only hydrogenase) and hmc mutant (lacking the membrane-bound, electron-transporting Hmc complex) strains produced increased amounts of hydrogen from lactate and formate compared to wild-type D. vulgaris during the fermentation burst. Both hydrogen and CO were produced from pyruvate, with the hyd mutant producing the largest transient amounts of CO. When grown with lactate and excess sulfate, the hyd mutant also exhibited a temporary pause in sulfate reduction at the start of stationary phase, resulting in production of 600 ppm of headspace hydrogen and 6,000 ppm of CO, which disappeared when sulfate reduction resumed. Cultures with an excess of the organic electron donor showed production of large amounts of hydrogen, but no CO, from lactate. Pyruvate fermentation was diverse, with the hmc mutant producing 75,000 ppm of hydrogen, the hyd mutant producing 4,000 ppm of CO, and the wild-type strain producing no significant amount of either as a fermentation end product. The wild type was most active in transient production of an organic acid intermediate, tentatively identified as fumarate, indicating increased formation of organic fermentation end products in the wild-type strain. These results suggest that alternative routes for pyruvate fermentation resulting in production of hydrogen or CO exist in D. vulgaris. The CO produced can be reoxidized through a CO dehydrogenase, the presence of which is indicated in the genome sequence. 相似文献
12.
Corinne Sebban Laurence Blanchard Mireille Bruschi Françoise Guerlesquin 《FEMS microbiology letters》1995,133(1-2):143-149
Abstract Formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, a sulfate-reducing bacterium, has been isolated and characterized. The enzyme is composed of three subunits. A high molecular mass subunit (83 500 Da) is proposed to contain a molybdenum cofactor, a 27 000 Da subunit is found to be similar to the Fe-S subunit of the formate dehydrogenase from Escherichia coli and a low molecular mass subunit (14000 Da) holds a c -type heme. The presence of heme c in formate dehydrogenase is reported for the first time and is correlated to the peculiar low oxidoreduction potential of the metabolism of these strictly anaerobic bacteria. In vitro measurements have shown that a monoheme cytochrome probably acts as a physiological partner of the enzyme in the periplasm. 相似文献
13.
Dissimilatory sulfite reductase (DsrAB) of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough is an 22 tetramer of 180 kDa, encoded by the dsr operon. In addition to the dsrA and dsrB genes, this operon contains a gene (dsrD) encoding a protein of only 78 amino acids. Although, the function of DsrD is currently unknown, the presence of a dsrD gene has been demonstrated in a variety of sulfate-reducing bacteria and archaea. DsrD was expressed in Escherichia coli at a very high level and purified to homogeneity. Protein blotting experiments, using antisera raised against purified DsrD, demonstrated that it is expressed constitutively in D. vulgaris and does not copurify with DsrAB. Spectroscopic analysis of DsrD indicated that it does not bind either sulfite or sulfide, the substrate and product, respectively of the reaction catalyzed by DsrAB. Thus, although the conservation of this protein and its demonstrated presence in D. vulgaris, suggest an essential function in dissimilatory sulfite reduction, this function remains to be elucidated. 相似文献
14.
Bacteriophages were induced from cultures of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541 by UV light. The optimum time of UV exposure was 1 min and the maximum yield of phage was obtained 9-10 h after UV treatment. The two phage preparations were compared by restriction enzyme analysis and Southern blot hybridization. The nucleic acid from both phages was cut by restriction endonucleases specific for double-stranded DNA. The phage DNAs from D. vulgaris and D. desulfuricans showed different restriction enzyme cleavage patterns. No homology was observed between a 25 kb probe from the D. vulgaris phage DNA and the phage DNA from D. desulfuricans. Protein profiles of the phages from both sources were also studied; the D. vulgaris phage contained two major bands corresponding to Mr values of 37 000 and 56 000 while the D. desulfuricans phage contained only one major band, of Mr 38 000. 相似文献
15.
Comparative studies of polyhemic cytochromes c isolated from Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans (Norway) 总被引:1,自引:0,他引:1
M Loutfi F Guerlesquin P Bianco J Haladjian M Bruschi 《Biochemical and biophysical research communications》1989,159(2):670-676
Cytochrome c3 (Mr 26,000) has been characterized in Desulfovibrio vulgaris (Hildenborough) and its properties compared with polyhemic cytochromes c isolated from the same organism and from D. desulfuricans (Norway). It can be described as an octaheme cytochrome c3 constituted of two identical subunits. Absorption spectrum is similar to cytochrome c3 (Mr 13,000) and individual redox potentials have an average value of -180 mV.3 The N terminal sequence is compared with an homologous cytochrome isolated from D. desulfuricans Norway. 相似文献
16.
17.
《BBA》1986,851(1):57-64
Two hydrogenase activities from Desulfovibrio vulgaris (Hildenborough) could be distinguished immunologically and biochemically. The first activity, described as hydrogenase I, corresponded to the soluble enzyme located in the periplasmic space of D. vulgaris. Hydrogenase I had a high specific activity and was sensitive to inhibition by CO. The second activity, hydrogenase II, was located in the membrane fraction, had a lower specific activity and was not affected by CO. The enzymes exhibited different electrophoretic mobilities in polyacrylamide gels, and reacted differently when exposed to proteases. Antibodies raised against purified periplasmic hydrogenase of D. vulgaris reacted with hydrogenase I, but not with hydrogenase II. 相似文献
18.
The complete amino acid sequence for the 148-amino acid flavodoxin from Desulfovibrio vulgaris was determined to be: H3N+-Met-Pro-Lys-Ala-Leu-Ile-Val-Tyr-Gly-Ser-Thr-Thr-Gly-Asn-Thr-Glu-Tyr-Thr-Ala-Glu-Thr-Ile-Ala-Arg-Glu-Leu-Ala-Asn-Ala-Gly-Tyr-Glu-Val-Asp-Ser-Arg-Asp-Ala-Ala-Ser-Val-Glu-Ala-Gly-Gly-Leu-Phe-Glu-Gly-Phe-Asp-Leu-Val-Leu-Leu-Gly-Cys-Ser-Thr-Trp-Gly-Asp-Asp-Ser-Ile-Glu-Leu-Gln-Asp-Asp-Phe-Ile-Pro-Leu-Phe-Asp-Ser-Leu-Glu-Glu-Thr-Gly-Ala-Gln-Gly-Arg-Lys-Val-Ala-Cys-Phe-Gly-Cys-Gly-Asp-Ser-Ser-Tyr-Glu-Tyr-Phe-Cys-Gly-Ala-Val-Asp-Ala-IleGlu-Glu-Lys-Leu-Lys-Asn-Leu-Gly-Ala-Glu-Ile-Val-Gln-Asp-Gly-Leu-Arg-Ile-Asp-Gly-Asp-Pro-Arg-Ala-Ala-Arg-Asp-Asp-Ile-Val-Gly-Try-Ala-His-Asp-Val-Arg-Gly-Ala-Ile-COO. This protein is of interest as it was the first flavoenzyme for which high resolution x-ray diffraction studies were published (Watenpaugh, K.D., Sieker, L.C., and Jensen, L.H. (1973) Proc. NAtl. Acad. Sci. U.S.A. 70, 3857-3860). Ser(10), Thr(12), Asn(14), and Thr(15) were shown to bind the phosphate of the FMN while the isoalloxazine ring is positioned between Trp(60) and Tyr(98). 相似文献
19.
H J Grande W R Dunham B Averill C Van Dijk R H Sands 《European journal of biochemistry》1983,136(1):201-207
The hydrogenases of Desulfovibrio vulgaris and Megasphaera elsdenii are compared with respect to some of their physical properties. In addition to Fe the only metal ions that are present in significant amounts are Ni and Cu. From cluster extrusion experiments it follows that the D. vulgaris enzyme contains three 4 Fe-4S clusters, while M. elsdenii hydrogenase only releases part of its Fe-S clusters. The resting D. vulgaris enzyme shows only a small 3 Fe-xS type of EPR signal (maximum 5% electron equivalent). This amount can be increased to approximately 25% by treatment with ferricyanide, with a concomitant large decrease in activity. The M. elsdenii enzyme shows in its oxidized state a normal Hipip (high-potential iron-sulphur protein) type of EPR spectrum. After a reduction/oxidation cycle the D. vulgaris enzyme also shows a weak Hipip type of EPR spectrum. In the reduced state both enzymes show complex spectra. By integration of those spectra it is shown that 1.5 electron equivalents are present. The complex spectra do not arise from nuclear hyperfine interactions but are partially due to electron spin interactions. It is proposed that the spectrum of reduced D. vulgaris hydrogenase consists of a sum of three different ferredoxin-like spectra. 相似文献
20.
Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) 总被引:22,自引:0,他引:22
The nucleotide sequence of the 4.7-kb SalI/EcoRI insert of plasmid pHV 15 containing the hydrogenase gene from Desulfovibrio vulgaris (Hildenborough) has been determined with the dideoxy chain-termination method. The structural gene for hydrogenase encodes a protein product of molecular mass 45820 Da. The NH2-terminal sequence of the enzyme deduced from the nucleic acid sequence corresponds exactly to the amino acid sequence determined by Edman degradation. The nucleic acid sequence indicates that a N-formylmethionine residue precedes the NH2-terminal amino acid Ser-1. There is no evidence for a leader sequence. The NH2-terminal part of the hydrogenase shows homology to the bacterial [8Fe-8S] ferredoxins. The sequence Cys-Ile-Xaa-Cys-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Cys-Pro-Xaa-Xaa-Ala-(Ile) occurs twice both in the hydrogenase and in [8Fe-8S] ferredoxins, where the Cys residues have been shown to coordinate two [4Fe-4S] clusters [Adman, E. T., Sieker, L. C. and Jensen, L. H. (1973) J. Biol. Chem. 248, 3987-3996]. These results, therefore, suggest that two electron-transferring ferredoxin-like [4Fe-4S] clusters are located in the NH2-terminal segment of the hydrogenase molecule. There are ten more Cys residues but it is not clear which four of these could participate in the formation of the third cluster, which is thought to be the hydrogen binding centre. Another gene, encoding a protein of molecular mass 13493 Da, was found immediately downstream from the gene for the 46-kDa hydrogenase. The nucleic acid sequence suggests that the hydrogenase and the 13.5-kDa protein belong to a single operon and are coordinately expressed. Since dodecylsulfate gel electrophoresis of purified hydrogenase indicates the presence of a 13.5-kDa polypeptide in addition to the 46-kDa component, it is proposed that the hydrogenase from D. vulgaris (Hildenborough) is a two-subunit enzyme. 相似文献