首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
Virus replication inhibitory peptide (carbobenzoxy-D-Phe-L-PheGly) was shown to be a potent specific inhibitor of the replication of paramyxovirus and myxovirus (Richardson, Scheid and Choppin (1980), Virology105, 205–222). This peptide inhibits the membrane fusing activity of a viral glycoprotein.Many agents which promote the formation of the hexagonal phase in membranes also accelerate membrane fusion. At a mole fraction of 0.1, viral replication inhibitory peptide can raise the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine by almost 10°. Two related peptides, carbobenzoxy-L-PheGly and carbobenzoxy-L-GlyPhe, are less potent in raising the bilayer to hexagonal phase transition temperature, with the latter peptide being the least effective of the three. This order of potency is the same as the order of potency in inhibiting viral replication. Substances which inhibit hexagonal phase formation of pure lipids may also inhibit membrane fusion.Abbreviations DEPE dielaidoylphosphatidyethanolamine - Z carbobenzoxy - DSC differential scanning calorimetry - VRIP virus replication inhibitory peptide (Z-D-Phe-L-PheGly)  相似文献   

2.
A number of substances affect the activity of protein kinase C. Among uncharged and zwitterionic compounds, those which activate protein kinase C also lower the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine while substances which inhibit protein kinase C raise this transition temperature. Using this criteria, we have identified 3-chloro-5-cholestene, 5-cholan-24-ol and eicosane as new protein kinase C activators and have shown that Z-Ser-Leu-NH2, Z-Gly-Leu-NH2, Z-Tyr-Leu-NH2, cyclosporin A and cholestan-3, 5, 6-triol are protein kinase C inhibitors.  相似文献   

3.
We measured the effects of two branched-chain analogs of distearoyl-phosphatidylcholine, containing either a methyl or an n-butyl group at the 8 position, on the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine. The former compound raised the bilayer to hexagonal phase transition temperature while the latter compound lowered it. The opposite effects of these amphiphiles on protein kinase C activity (inhibition and activation, respectively) correlated with their effects on lipid polymorphism. Because of the similarity of the structures of these two compounds, it seems likely that their opposite effects on the activity of protein kinase C is a result of their alteration of the lipid environment of the membrane rather than to binding to a specific site on the protein.We also compared the effects of hexachlorophene on lipid polymorphism and protein kinase C activity at high and at low calcium concentrations. We also found that the effect of hexachlorophene forming a complex with Ca2+ is to increase both the hexagonal phase forming propensity of the membrane as well as to increase the activity of protein kinase C, again demonstrating the correlation between lipid phase propensity and effects on protein kinase C activity.Abbreviations DSPC distearoylphosphatidylcholine - DSPC-8M and DSPC-8B the 8-methyl and 8-n-butyl derivatives of DSPC, respectively - PKC protein kinase C - DSC differential scanning calorimetry  相似文献   

4.
Polycationic amino acids induce the leakage and fusion of liposomes containing anionic lipids. We have investigated the nature and extent of the changes in membrane physical properties caused by these polypeptides which could result in the observed membrane destabilization. We found that in the range of pH 5 to pH 7 both poly-l-histidine and poly-l-lysine were ineffective in shifting the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine, either in the presence of absence of 1-palmitoyl-2-oleoylphosphatidylserine. We also studied the gel to liquid crystalline phase transition properties of 11 mixtures of phosphatidylserine and phosphatidylethanolamine, both in dimyristoyl forms as well as the 1-palmitoyl-2-oleoyl forms, as a function of pH and in the presence and absence of polycationic amino acids. We observed that these two lipids were largely miscible at all pH values and in the presence and absence of the polypeptides. However, there was some increased tendency for phase separation at higher pH and in the absence of polypeptide. Thus neither changes in curvature strain nor lateral phase separation induced by the polycationic amino acids could account for their marked ability to induce leakage and fusion.Phosphatidylethanolamine labelled with pyrene on one of the acyl chains gives rise to fluorescent emission from both monomer and excimer forms. The ratio of emission intensity from these two forms is indicative of lateral phase separation and the degree of lateral mobility of this probe. In equimolar mixtures of the 1-palmitoyl-2-oleoyl forms of phosphatidylserine and phosphatidylethanolamine in the liquid crystalline phase at 30 °C we find little effect of pH on the ratio of excimer to monomer emission intensity. However poly-l-lysine markedly lowers the fraction of excimer emission from these liposomes through the pH range from 5 to 7. Poly-l-histidine lowers the excimer to monomer emission ratio at pH 5 but not at pH 7. This is opposite to what one would expect for lateral phase separation and is interpreted at being the consequence of the polypeptide lowering the rate of lateral diffusion of the lipids. This effect of poly-l-histidine is observed over a range of temperatures from 0 to 40°C in both gel and liquid crystalline phases. There is no evidence from the behaviour of the pyrene fluorescent probe for lipid interdigitation. We conclude that the promotion of leakage and fusion in anionic liposomes by polycationic amino acids is not a result of large changes in the physical properties or arrangements of the lipids but rather to a surface binding of the polyamino acids.Abbreviations DSC differential scanning calorimetry - DEPE dielaidoylphosphatidylethanolamine - POPS 1-palmitoyl-2-oleoylphosphatidylethanolamine - DMPS dimyristoylphosphatidylserine - DMPE dimyristoylphosphatidylethanolamine - POPE 1-palmitoyl-2-oleoylphosphatidylethanolamine - TH bilayer to hexagonal phase transition temperature - pyr-PE 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphoethanolaline - E/M ratio of intensities of excimer to monomer emission  相似文献   

5.
R M Epand 《Biochemistry》1985,24(25):7092-7095
The bilayer to hexagonal phase transition temperatures of dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylethanolamine are 65.6 and 71.4 degrees C, respectively. Using high-sensitivity differential scanning calorimetry, I have shown that these transition temperatures are extremely sensitive to the presence of small amounts of other lipid components. For example, at a mole fraction of only 0.01, dilinolenin lowers the bilayer to hexagonal phase transition temperature of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine by 8.5 degrees C. Other diacylglycerols have similar effects on this transition temperature, although the degree of unsaturation of the acyl chains has some effect, with distearin being less potent. In comparison, the 20-carbon alkane eicosane lowers this transition temperature by 5 degrees C, while palmitoyl-lysolecithin raises it by 2.5 degrees C. Similar effects of these additives on the bilayer to to hexagonal phase transition temperature are observed with dielaidoylphosphatidylethanolamine. At these concentrations of additive, there is no effect on the gel-state to liquid-crystalline-state transition temperature. The observed shifts in the temperature of the bilayer to the hexagonal phase transition can be qualitatively interpreted in terms of the effects of these additives on the hydrophilic surface area and on the hydrophobic volume. Substances expanding the hydrophobic domain promote hexagonal phase formation and lower the bilayer to hexagonal phase transition temperature. The sensitivity of the bilayer to hexagonal phase transition temperature to the presence of additives is at least as great as that which has been observed for any other lipid phase transition.  相似文献   

6.
Amantadine and tromantadine are agents used against influenza and herpes infections, respectively. Tromantadine raises the bilayer to hexagonal phase transition temperature of synthetic phosphatidylethanolamines and is less disruptive to phospholipid packing. Tromantadine acts similar to cyclosporin A, previously demonstrated to inhibit viral-induced cell-cell fusion. We suggest the balance between the hydrophobic and hydrophilic group sizes would allow tromantadine to prevent membrane fusion more than amantadine and thus inhibit infection by viruses such as Herpes, which fuse with the plasma membrane. Study of agents which stabilize the bilayer phase of membranes may lead to efficacious inhibitors of viral infections requiring cell fusion events.Abbreviations DEPE dielaidoyl phosphatidylethanolamine - POPE 1-palmitoyl-2-oleoyl phosphatidylethanolamine - DMPC dimyristoyl phosphatidylcholine - DSC differential scanning calorimetry - PIPES piperazine-N,N-bis(2-ethanesulphonic acid) - NMR nuclear magnetic resonance - tromantadine N-1-adamantyl-N-[2-(dimethylamino)ethoxy]a(ethoxy]acetamide-hydrochloride - amantadine (1-adamantamine)-hydrochloride - HSV Herpes Simplex Virus  相似文献   

7.
J J Cheetham  E Wachtel  D Bach  R M Epand 《Biochemistry》1989,28(22):8928-8934
The phase behavior of mixtures of cholesterol or epicholesterol with phosphatidylethanolamine was studied by differential scanning calorimetry and by X-ray diffraction. Discrete domains of cholesterol are detected by X-ray diffraction in the L alpha phase of phosphatidylethanolamine from egg yolk and synthetic dielaidoylphosphatidylethanolamine beginning at mole fractions of 0.35-0.4 cholesterol. Separate domains of crystalline epicholesterol can also be detected in the L alpha phase of dielaidoylphosphatidylethanolamine by X-ray diffraction at as little as 0.16 mole fraction of epicholesterol. This is a result of poor miscibility of the epicholesterol with dielaidoylphosphatidylethanolamine. Epicholesterol does not alter the L beta----L alpha transition or bilayer spacing. Epicholesterol also has little effect on the diameter of the cylinders in the hexagonal phase. Formation of the inverted hexagonal phase is facilitated by addition of small amounts of cholesterol (mole fraction less than 0.2) in both egg phosphatidylethanolamine and dielaidoylphosphatidylethanolamine. However, at higher mole fractions of cholesterol, the stability of the liquid-crystalline phase is found to increase markedly for dielaidoylphosphatidylethanolamine but not for egg phosphatidylethanolamine, indicating the importance of the structure of the acyl chains in controlling the relative stability of the lamellar and nonlamellar phases in these systems. In contrast to cholesterol, epicholesterol markedly lowers the L alpha----HII phase transition temperature at low mole fraction of sterol. This result demonstrates the importance of the orientation and motional properties of an additive in determining the L alpha----HII transition temperature.  相似文献   

8.
9.
The alignment of the sn-1 and sn-2 acyl chains at the terminal methyl ends generally produces significant influence on the thermodynamic properties of the bilayer phase transitions. We investigated the bilayer phase behavior of asymmetric phospholipids, myristoylpalmitoylphosphatidylcholine and palmitoylmyristoylphosphatidylcholine, by high-pressure light-transmittance and Prodan-fluorescence techniques and differential scanning calorimetry. Constructed temperature-pressure phase diagrams revealed that no stable phase can exist in the whole pressure range because of the formation of the most stable Lc phase. Nevertheless, the pretransition, the detection of which is severely hampered by the exceptionally prompt formation of the Lc phase, was successfully observed. Moreover, the effect of the total and difference of the sn-1 and sn-2 acyl chain lengths on minimal interdigitation pressure (MIP) was summarized in a MIP vs. chain-length inequivalence parameter plot, where the effect was proved to be classified in three zones depending on the alignment of both terminal methyl ends.  相似文献   

10.
X-ray small-angle diffraction, differential scanning calorimetry (DSC), and temperature scanning densitometry (TSD) were used to study the effect of -lysin on the phase transitions of lipid assemblies from 1,2-0-dixehadecyl-sn-glycero-3-phosphoholine (DHPC). The experiments were carried out in excess of water in a temperature range of 0–55 °C, and at low peptide concentrations between 10-4 and 10-2 moles peptide per mole phospholipid. The incorporation of -lysin into lipid assemblies alters the lipid structure without significant changes on the temperatures of phase transition from gel to liquid crystalline phase. The temperature of the main transition was nearly unaffected. A reduction in the transition volume of the lipids with increasing concentrations of -lysin was observed. The minor changes in these parameters were interpreted as long-range structural changes caused by the peptide incorporation. The results are discussed in terms of the concept of cooperative phase transition of entire clusters occurring within a membrane implying that relative stable domains of gel phase, and liquid crystalline phase co-exist.  相似文献   

11.
Summary The effect of more than ninety lipid-soluble compounds on the phase transition behavior ofdl--dipalmitoyl lecithin bilayer has been examined by differential scanning calorimetry. The type of effect on the phase transition profile depends on the nature of the additive, whereas the extent of the effect depends on the concentration. The compounds examined include uncouplers, alkanols, fatty acids, detergents, organic solvents, ionophores, inorganic ions, and some commonly used spin-labelled and fluorescent membrane probes. A qualitatively distinct effect of several of these additives on the phase transition behavior of bilayer provides a method of determining the nature of the perturbation they induce in the bilayer organization. The observations are consistent with the hypothesis that the type of effect induced by an additive on the phase transition profile of the bilayer is related to the position of localization of the additive along the thickness of the bilayer. At least four different types of modified transition profiles that are related to changes in bilayer fluidity can be distinguished. These correspond to the localization of the additive in phosphorylcholine (type D), glycerol backbone (type B), C1–C8 methylene (type A), C9–C16 methylene (type C) region of the bilayer. A possible relationship between the type of phase transition profiles of modified liposomes and the physiological effects of drugs is also discussed.  相似文献   

12.
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.  相似文献   

13.
The 2H-NMR spectrum of the exchangeable hydrogens of the synthetic amphiphilic polypeptide, lys2-gly-leu24-lys2-ala-amide, was measured for the solid peptide at room temperature and, as a function of temperature, for the peptide incorporated into hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers. This study is a prototype of a similar class of experiments which can be carried out on integral membrane proteins to characterize, quantitatively, the dynamic properties of integral membrane proteins. At temperatures below the DPPC gel-liquid crystalline phase transition, the 2H NMR spectrum was very similar to that of the solid peptide indicating that the peptide was immobilized in the lipid bilayer on the time scale (10-5 s) of the 2H-NMR measurements. The 2H-NMR spectrum above the phase transition corresponded to that expected from a peptide in the -helical conformation reorienting rapidly about the symmetry axis of the -helix. Measurements of the quadrupolar echo relaxation time, T 2e , gave a quantitative measure of the correlation time, c , for this motion. The value of c decreased rapidly with increasing temperature as the fraction of DPPC molecules in the liquid crystalline phase increased, reaching a value of 2×10-7s above the phase transition. The observation of a characteristic minimum in T 2e as the temperature was raised provided a definitive, quantitative interpretation of the T 2e measurements. Using the known geometry of the peptide and the theory of uniaxial rotational diffusion, a value of =1.1 poise was obtained for the effective viscosity of the membrane in close agreement with values obtained previously from transient linear dichroism measurements.Abbreviations NMR nuclear magnetic resonance - DPPC dipalmitoylphosphatidylcholine - K2GL24K2A-amide lys2-gly-leu24-lys2-ala-amide  相似文献   

14.
A series of phosphatidylcholines and phosphatidylethanolamines was synthesized containing two acyl chains of the following polyunsaturated fatty acids: linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4) and docosahexaenoic acid (22:6). In addition two phospholipids with mixed acid composition were synthesized: 16:0/18:1c phosphatidylcholine and 16:0/18:1c phosphatidylethanolamine. The structural properties of these lipids in aqueous dispersions in the absence and in the presence of equimolar cholesterol were studied using 31P-NMR, freeze fracturing and differential scanning calorimetry (DSC).The phosphatidylcholines adopt a bilayer configuration above 0°C. Incorporation of 50 mol% of cholesterol in polyunsaturated species induces a transition at elevated temperatures into structures with 31P-NMR characteristics typical of non-bilayer organizations. When the acyl chains contain three or more double bonds, this non-bilayer organization is most likely the hexagonal HII phase, 16:0/15:1c phosphatidylethanolamine shows a bilayer to hexagonal transition temperature of 75°C. The polyunsaturated phosphatidylethanolamines exhibit a bilayer to hexagonal transition temperature below 0°C which decreases with increasing unsaturation and which is lowered by approximately 10°C upon incorporation of 50 mol% of cholesterol. Finally, it was found that small amounts of polyunsaturated fatty acyl chains in a phosphatidylethanolamine disproportionally lower its bilayer to hexagonal transition temperature.  相似文献   

15.
16.
Summary The addition of calcium to suspensions of egg phosphatidylcholine and cardiolipin converts multiwalled liposomes to the hexagonal (HII) phase (Rand, R.P., Sengupta, S. (1972)Biochim. Biophys. Acta 255:484–492). We have studied this lamellar to hexagonal phase transition by freeze-fracture, thin-section electron microscopy, and X-ray diffraction and have morphologically characterized the intermediate stages. The first step in the transition involves the invagination and fusion of bilayers, marked by the appearance of lipidic intramembrane particles and crater-like indentations, as the large liposomes are converted to smaller flattened and elongated vesicles. The next step is the formation of tightly packed hexagonal arrays of tubules, each tubule being about 11 to 15 nm in diameter. These tubules are filled with fluid and a lipid bilayer forms the wall of each cylinder. Finally this tubular bilayer phase is converted to the hexagonal (HII) phase, where the distance between tubes is 5.5 to 7.5 nm.  相似文献   

17.
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal HII structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane.  相似文献   

18.
19.
Influence of vitamin E on phosphatidylethanolamine lipid polymorphism   总被引:1,自引:0,他引:1  
The effect of vitamin E, in its major form alpha-tocopherol and its synthetic analog alpha-tocopheryl acetate, on phosphatidylethanolamine lipid polymorphism has been studied by mean of differential scanning calorimetry and 31P-nuclear magnetic resonance techniques. From the interaction of these tocopherols with dielaidoylphosphatidylethanolamine it is concluded that both molecules promote the formation of the hexagonal HII phase at temperatures lower than those of the pure phospholipid. When the tocopherols were incorporated in the saturated dimiristoylphosphatidylethanolamine, which has been shown not to undergo bilayer to hexagonal HII phase transition, up to 90 degrees C, they induce the phospholipid to partially organize in hexagonal HII phase. From our experiments it is shown that alpha-tocopherol is more effective than its analog in promoting HII phase in these systems. It is also shown that, while alpha-tocopheryl acetate does not significantly perturb the gel to liquid-crystalline phase transition of dimirystoylphosphatidylethanolamine, alpha-tocopherol does so and more than one peak appears in the calorimetric profile, indicating that lateral phase separations are taking place.  相似文献   

20.
The contribution of ionic interactions to the stability of the collagen triple helix was studied using molecular dynamics (MD) simulations and biophysical methods. To this end, we examined the stability of a host-guest collagen model peptide, Ac-GPOGPOGPYGXOGPOGPO-NH2, substituting KGE, KGD, EGK, and DGK for the YGX sequence. All-atom, implicit solvent MD simulations show that the fraction of cross-chain ionic interactions formed is different, with the most pronounced in the KGE and KGD sequences, and the least in the DGK sequence. To test whether the fraction of cross-chain ionic interactions correlates with the stability, experimental measurements of thermostability were done using differential scanning calorimetry and circular dichroism spectroscopy. It was found that the melting temperature is very similar for KGE and KGD peptides, whereas the EGK peptide has lower thermostability and the DGK peptide is the least thermostable. A novel, to our knowledge, computational protocol termed temperature-scan MD was applied to estimate the relative stabilities of the peptides from MD simulations. We found an excellent correlation between transition temperatures obtained from temperature-scan MD and those measured experimentally. These results suggest the importance of cross-chain ionic interactions for the stability of collagen triple helix and confirm the utility of MD simulations in predicting interactions and stability in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号