首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of various microsomal enzyme inducers such as DDT, benzpyrene, 3-MC, TCDD or phenobarbital on liver microsomal mixed-function oxidases and cytochrome P450 content in mice genetically responsive (C57B1/6J) and resistant (DBA/2J) to induction of aryl hydrocarbon hydroxylase (AHH) was studied. 3-MC and benzpyrene administration stimulated liver AHH activity 6–8 fold in C57B1/6J mice but had no effect in DBA/2J mice. However, intraperitoneal administration of TCDD increased AHH activity in both C57BL/6J and DBA/2J mice. This increase was accompanied by shift in the peak of cytochrome P450 difference spectrum from 450 to 448 nm. It is concluded that genetic resistance to AHH stimulation in DBA/2J mice is influenced by the type of inducer used.  相似文献   

2.
Phenobarbital, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), benzpyrene, 3-methylcholanthrene (3-MC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were administered i.p. for 1 or 3 days to genetically “responsive” (C57BL/6J) and genetically “non-responsive” (DBA/2J) mice. 3-MC or benzpyrene stimulated aryl hydrocarbon hydroxylase (AHH) activity in C57BL/6J (B6) mice but not in DBA/2J (D2) mice. TCDD induced AHH activity in both B6 and D2 mice. Time-course studies showed that in the first 12 h after a single injection of 3-MC to B6 mice there was no shift in the reduced cytochrome P-450-CO complex absorption spectra from 450 to 448 nm, although AHH activity increased 4–5 times over (above) that of the control group. The relationship between induction of AHH activity by polycyclic hydrocarbons in B6 mice and the concomitant synthesis of cytochrome P-448 is discussed.  相似文献   

3.
The effects of coplanar+ 3,4,5,3′,4′,5′-hexachlorobiphenyl (HCB) and noncoplanar 2,4,5,2′,4′,5′-HCB, 2,3,5,2′,3′,5′-HCB, phenobarbitone (PB) and 3-methylcholanthrene (3-MC) on drug metabolizing enzymes have been studied 72 hr after dosing in male rat liver. 3-MC and 3,4,5,3′,4′,5′-HCB induced the activity of ethoxyresorufin deethylase dramatically. NADPH cytochrome P-450 reductase and benzphetamine N-demethylase were induced by PB and noncoplanar isomers and not by 3-MC or 3,4,5,3′,4′,5′-HCB. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the microsomes obtained from various groups showed that 3-MC and 3,4,5,3′,4′,5′-HCB induced the synthesis of a polypeptide of approximate 54,500 daltons which was absent in the microsomes obtained from control, PB or noncoplanar isomer treated animals. Noncoplanar isomers and PB induced the synthesis of a polypeptide of approximate 51,000 daltons. These results, along with the reduced, CO difference spectra, demonstrate that 3,4,5,3′,4′,5′-HCB induces the synthesis of cytochrome P-448 and resembled 3-MC in its mechanism of action, while noncoplanar isomers induced the synthesis of cytochrome P-450 and resembled PB in its mechanism of action. Further administration of various doses of 3,4,5,3′,4′,5′-HCB to genetically responsive mice (C57BL/6J), induced cytochrome P-450, caused one nm shift in the difference spectrum of reduced microsomes and induced the activity of ethoxyresorufin deethylase, whereas it did not induce the activity of ethoxyresorufin deethylase in non-responsive mice (DBA/2J) even at the highest dose studied. These studies indicate the fact that coplanar and noncoplanar isomers have differential interaction with Ah locus.  相似文献   

4.
Phenobarbital-induced coumarin 7-hydroxylase is high in DBA/2J and low in C57BL/6N inbred mice; this genetic difference is encoded by the Coh locus on chromosome 7. The aim of this study was to develop an antibody specific for this cytochrome P-450 polymorphism. P-450 fractions, highly specific for phenobarbital-inducible coumarin 7-hydroxylase activity, were purified from DBA/2J and C57BL/6N mouse liver microsomes. Both proteins are 49 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Soret peaks of the reduced cytochrome . CO complexes are 451 nm. Reconstituted DBA/2J coumarin 7-hydroxylase activity exhibits a V twice as high as, and a Km value 10-fold less than, the reconstituted C57BL/6N activity. Antibodies were raised in rabbit. By Ouchterlony immunodiffusion, both antibodies show 100% cross-reactivity with DBA/2J and C57BL/6N microsomes and purified antigens. Yet, DBA/2J but not C57BL/6N 7-hydroxylase activity is inhibited by the antibody to DBA/2J P-450. Both DBA/2J and C57BL/6N activities are blocked by the antibody to C57BL/6N P-450. Neither antibody has any effect on liver microsomal d-benzphetamine N-demethylase, ethylmorphine N-demethylase, aminopyrine N-demethylase, 7-ethoxycoumarin O-deethylase, acetanilide 4-hydroxylase, or aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. The DBA/2J protein most specific for phenobarbital-induced coumarin 7-hydroxylation is designated 'P-450Coh'. Anti-(P-450Coh) precipitates a relatively minor 49-kDa protein from detergent-solubilized microsomes and from in vitro translation of poly(A+)-enriched total RNA of phenobarbital-treated DBA/2J mouse liver, whereas the major phenobarbital-induced P-450 proteins exhibit a molecular mass of about 51 kDa. The immunoprecipitated translation products correspond to a messenger RNA of 2100 +/- 100 nucleotides.  相似文献   

5.
Mouse "cytochrome P2-450" is defined as that form of isosafrole-induced P-450 in DBA/2N liver most specifically correlated with isosafrole metabolism. Isosafrole pretreatment does not induce aryl hydrocarbon hydroxylase activity ("cytochrome P1-450") in C57BL/6N or DBA/2N mice, induces acetanilide 4-hydroxylase activity ("cytochrome P3-450") more than 3-fold in C57BL/6N but not in DBA/2N mice, and induces isosafrole metabolite formation more than 3-fold in both C57BL/6N and DBA/2N mice. P2-450 was, therefore, purified from isosafrole-treated DBA/2N liver microsomes having negligible amounts of contaminating P1-450 and P3-450. The apparent molecular weight of P2-450 is 55,000, and the protein appears homogeneous on sodium dodecyl sulfate-polyacrylamide gels. The Soret peak of the reduced purified cytochrome X CO complex is 448 nm. Purified P2-450, reconstituted in vitro, metabolizes acetanilide poorly and benzo[a]pyrene hardly at all. Anti-(P2-450) inhibits (90 to 100%) liver microsomal isosafrole metabolite formation, yet has no effect on aryl hydrocarbon hydroxylase, acetanilide 4-hydroxylase, biphenyl 2- or 4-hydroxylase, or 7-ethoxycoumarin O-de-ethylase activities. 3-Methylcholanthrene induces anti-(P2-450)-precipitable protein about 12-fold in C57BL/6N and 2-fold in DBA/2N liver; 2,3,7,8-tetrachlorodibenzo-p-dioxin (10 micrograms/kg), about 12-fold in both C57BL/6N and DBA/2N liver; isosafrole, more than 3-fold in both C57BL/6N and DBA/2N. Benzo[a]anthracene at maximal doses induces anti-(P2-450)-precipitable protein in C57BL/6N liver no more than 2-fold, yet is known to be a highly potent inducer of P1-450 mRNA in C57BL/6N liver. The sensitivity of the P2-450 induction process to isosafrole is inherited as an autosomal additive trait; studies of offspring from the C57BL/6N(DBA/N)F1 X DBA/2N backcross confirm involvement of the Ah locus or s closely segregating gene. In contrast, among crosses between C57BL/6N and DBA/2N, sensitivity of the P1-450 and P3-450 induction process to 3-methylcholanthrene or 2,3,7,8-tetrachlorodibenzo-p-dioxin is inherited as an autosomal dominant trait. These data suggest that, although P1-450, P2-450, and P3-450 proteins are controlled by the Ah locus, either a P-450 protein polymorphism exists between C57BL/6N and DBA/2N mice or subtle differences may exist in the interaction of various inducers with Ah receptor.  相似文献   

6.
Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.  相似文献   

7.
The inducible expression of the cytochrome P450 2B subfamily was investigated in male C57BL/6 (B6) and DBA/2 (D2) mice, as well as their hybrids, B6D2F1, at the mRNA level. The expression of hepatic CYP2B mRNAs in B6 was lightly induced by beta-estradiol (ES), while that by phenobarbital (PB) or 1,1,1-trichloro-2, 2-bis(p-chlorophenyl) ethane (DDT) was prominent. Discriminating analysis showed a novelty that ES markedly induced CYP2B9 mRNA expression, whereas PB and DDT increased CYP2B10 more than CYP2B9 expression: albeit both mRNA species responded to all three inducers. Furthermore, the specific induction by ES of CYP2B9 mRNA in B6 male mice, but not D2 male mice, suggests strain dependency in the regulatory pathway of CYP2B9 expression.  相似文献   

8.
1. Ethoxyresorufin O-deethylase (EROD) activity, aldrin epoxidase (AE) activity, cytochrome P-450 content, and levels of cytochrome P-450E (the major BNF-inducible P-450 form and primary EROD catalyst in scup) or its homologues were measured in hepatic microsomes isolated from Fundulus heteroclitus, scup (Stenotomus chrysops) and brook trout (Salvelinus fontinalis) treated with beta-naphthoflavone (BNF) or phenobarbital (PB). 2. In all three teleost species, BNF treatment caused expected increases in P-450 content, EROD activity and P-450E level; but either no change or a slight decrease in AE turnover rate (nmol/min/nmol P-450). 3. Polyclonal antibodies to P-450E did not inhibit AE activity in microsomes from BNF-treated scup, confirming that this major BNF-inducible P-450 form does not catalyze AE activity in fish. 4. In contrast, PB treatment did not affect hepatic AE activity, P-450 content or levels of "P-450E" in F. heteroclitus, but did variably affect EROD activity which was suppressed in one experiment and elevated in another. 5. The results indicate that (i) contrary to previous reports, neither PB nor MC-type inducers increase AE activity in F. heteroclitus, (ii) MC-type inducers do not affect AE activity in the other teleost species examined, and (iii) AE activity is not a reliable indicator of P-450 induction by environmental chemicals. 6. We emphasize the need to establish the mechanism of PB action, and the nature of any fish P-450 forms analogous to PB-inducible forms in mammals in order to conclusively evaluate PB-responses in fish.  相似文献   

9.
Contents of hepatic microsomal protein, aminopyrine N-demethylase, acetanilide hydroxylase, aniline hydroxylase, hydrogen peroxide formation, cytochrome-c-reductase, cytochrome b5 and cytochrome P-450 were examined in control, phenobarbital (PB), 3-methylcholanthrene (3-MC) and 1, 1, 1-trichloro-2, 2-bis(p-chlorophenyl)ethane (DDT) treated group of 1-28 days old chickens. Increase in aminopyrine N-demethylase, acetanilide hydroxylase, aniline hydroxylase, cytochrome-c-reductase, cytochrome b5 and cytochrome P-450 was noticed at all stages of development during administration of PB and 3-MC. But these enzyme activities were not always paralleled by increase in age. Aminopyrine N-demethylase was increased in early stages only during DDT administration, which indicates that the form of cytochrome P-450, responsible for aminopyrine N-demethylation is present in early stages only. However, acetanilide hydroxylase was decreased in all stages of development, in postnatal development the basal activities of the enzymes for various substrates do not exhibit identical pattern, the degree of inducibility by inducers varied in relation to age of animal. Hydrogen peroxide formation increased in all stages of developing chickens due to the administration of PB and DDT. It however decreased due to 3-MC administration which may be due to induction of high spin cytochrome P-450.  相似文献   

10.
《Life sciences》1993,53(25):PL421-PL426
Coumarin derivative, scoparone (6,7-dimethoxycoumarin), is regioselectively O-demethylated into isoscopoletin (I) and scopoletin (S). This oxidation is inversely influenced by cytochrome P-450 inducers in the rat such as 3-methylcholantrene (3-MC) and phenobarbital (PB). The I/S ratio is higher than 1.5 with 3-MC treatment whereas it is lower than 0.5 with PB treatment. With regards to this contrasting effect, it gas been suggested that the I/S ratio should be useful to differemtiate between the effects of these types of inducers. We studied the consequences of in vivo PB and 3-MC treatment on scoparone biotransformation in guinea pig and rabbit. In these two species, at the basal state, scoparone biotransformation was enhanced in comparison to the rat. Moreover, in these untreated animals, two other metabolites were formed. After 3-MC or PB treatment, scoparone metabolism is, in contrast to the rat, inappropriate to differentiate between the P-450 profile of other animals.  相似文献   

11.
We measured the response of HepG2 cells to the classic cytochrome (cyt.) P-450 inducers 3-methylcholanthrene (3-MC) and phenobarbital (PB), by evaluating oxidative and/or reductive metabolism of the nitroarenes, 1-NP and 1,6-dinitropyrene (1,6-DNP), in control and induced cells. In HepG2 cells, 3-MC induces ring-hydroxylation of 1-NP, whereas PB stimulates its nitroreduction. PB induces NADPH-cyt. c reductase, but does not affect other cytosolic and microsomal enzymes which contribute to 1-NP nitroreduction in these cells. However, PB-inducible nitroreductase activity seems to be associated primarily with cyt. P-450 isoenzymatic form(s), as indicated by the requirement for NADPH and the response to specific inhibitors such as alpha-naphthoflavone and CO.  相似文献   

12.
Polyclonal antibodies to the major beta-naphthoflavone (BNF)-inducible form of cytochrome P-450 (P450IA) and to the major phenobarbitone (PB)-inducible form (P450IIB) have been used to quantify the contribution of these subfamilies to the total amount of cytochrome P-450 in rat livers and rat hepatocyte cultures treated with PB, BNF and metyrapone for 24 and 72 h. The P450IA and IIB subfamilies were not detectable (less than 5 pmol/mg of microsomal protein) in the livers of control rats, but administration of BNF resulted in the P450IA subfamily comprising more than 80% of the total hepatic cytochrome P-450. Administration of PB and metyrapone to rats did not elevate the level of this subfamily but elevated the levels of the P450IIB subfamily to 60% and 30% respectively of the total. Thus metyrapone is a ''PB-like'' inducer. However, in contrast with their effects in vivo, treatment with PB and metyrapone of rat hepatocytes did not elevate the proportion of the P450IIB subfamily relative to that in untreated cells but rather, like BNF, increased the P450IA subfamily. This would account for the ability of metyrapone to produce in hepatocyte culture, like BNF, a pronounced induction of ethoxyresorufin O-de-ethylase activity, but it does not account for why of all inducers studied only metyrapone can maintain the total cytochrome P-450 content of cultured hepatocytes, or the activity of ethylmorphine N-demethylase. This activity is generally considered to be associated with the P450IIB subfamily, but the lack of effect of metyrapone on this subfamily in hepatocyte culture must suggest that metyrapone is able to prevent the loss of the total amount of the cytochrome by increasing the expression of other cytochromes P-450.  相似文献   

13.
Southern blot analysis suggests that multiple sequences homologous to a phenobarbital-inducible cytochrome P-450 cDNA are present in the rat and mouse genomes. A cDNA (pP-450b-5) to a major phenobarbital-inducible cytochrome P-450 mRNA species in the rat detected 6 polymorphic DNA fragments when hybridized to DNA from C57BL/6J and DBA/2J mice restricted with endonucleases EcoRI, BamHI, and PvuII. Using the BXD recombinant inbred strains, five of these polymorphisms were mapped to the Coh (coumarin hydroxylase) locus on chromosome 7 of the mouse. The Coh locus has previously been shown to code for a phenobarbital-inducible enzyme, believed to be a cytochrome P-450, which catalyzes the conversion of coumarin to 7-hydroxycoumarin (umbelliferone). The DNA polymorphisms appear to reflect changes in either cytochrome P-450 genes or pseudogenes that are very closely linked to the gene responsible for differential coumarin hydroxylase in mice or it may represent a change(s) in the Coh gene itself. The region of the Coh locus on chromosome 7 may be the site of a cluster of cytochrome P-450 genes.  相似文献   

14.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

15.
Cytochrome P-450 reductase and aryl hydrocarbon hydroxylase activities were investigated in hepatic microsomes from untreated C57BL/6J, DBA/2J, B6D2F1, and (B6D2) D2 mice. The dependence of the rate of P-450 reduction on the concentration of added pyridine nucleotide (NADPH or NADH) was biphasic in DBA/2J microsomes but monophasic in C57BL/6J microsomes. Analogous strain-specific patterns were observed when the dependence of the rate of benzpyrene hydroxylation on NADPH concentration was examined. In crosses between the two inbred strains and between B6D2F1 mice and DBA/2J mice, the biphasic pattern for both the reductase and the hydroxylase activities was found to co-segregate with the recessive allele for aromatic hydrocarbon responsiveness. These results might reflect an architectural difference between the microsomal electron transport systems of responsive and nonresponsive mice.  相似文献   

16.
The effect of the insecticides, mirex and chordecone (Kepone), on the cytochrome P-450 monooxygenase system in C57BL/6N mouse liver microsomes was studied. Mice were treated intraperitoneally with low (6 mg/kg) and high (30 mg/kg) doses of mirex and chlordecone in corn oil for 2 days. For comparison, mice were also treated with either phenobarbital (PB) or 3-methylcholanthrene (3-MC). All treatments significantly increased the hepatic microsomal P-450 content over that of controls. Benzphetamine N-demethylase, ethoxyresorufin O-deethylase, benzo[a]pyrene hydroxylase, and acetanilide hydroxylase activities were also determined. Mirex and chlordecone resembled phenobarbital with respect to the induction of monooxygenase activities. Immunoquantitation with antibodies to purified P-450 IIB1 (Pb-induced P-450) and P-450 IA1 (3-MC-induced P-450) indicated that mirex and chlordecone induced P-450 IIB1 in a dose-dependent manner. The high dose of mirex also induced a small amount of a protein cross reacting with the antibody to IA1. The induction of this isozyme did not, however, contribute significantly to the monooxygenase activities measured.  相似文献   

17.
D. melanogaster development was markedly retarded and its survival decreased by larvae treatment with compounds being strong inducers of the cytochrome P-450 2B in mammals— phenobarbital (PB*), perfluorodecaline (PFD), transstilbene oxide (TSO), and triphenyldioxane (TPD). At the same time, the weak inducer hexobarbital or the selective cytochrome P-450 inducer in mice but not in rats 1,4-bis[2-(dichloropyridyl-oxy)]-benzene (DPB) did not affect the larvae development. The cytochrome P-450 1A1 inducers benzo(a)anthracene (BA) and β-naphtoflavone (BNF) were also not effective. The toxicity of phenobarbital was shown to be decreased by the cytochrome P-450 inhibitor piperonyl butoxide by adding 20-hydroxyecdysone or by treatment with aminophylline—the indirect enhancer of ecdysone production in the larval prothoracic gland. The hypothesis of the moulting hormone degradation as the cause of elevated larvae mortality resulting from the induced high mixed function oxidase activity has been discussed.  相似文献   

18.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

19.
The epitope-specific cytochrome P-450 content of animal livers was analysed by radioimmunoassay using a panel of seven monoclonal antibodies (MAbs) made to a 3-methylcholanthrene-induced rat liver cytochrome P-450. Competitive radioimmunoassays utilizing a reference radiolabelled MAb and a series of unlabelled MAbs indicated that there are at least three distinct classes of MAbs to different epitopes on cytochrome P-450. In addition, a direct radioimmunoassay employing a radiolabelled second antibody detected MAb-specific cytochromes P-450 in livers from different animals. This radioimmunoassay detected large elevations in the levels of these cytochromes P-450 in the livers of 3-methylcholanthrene-treated rats and C57BL/6 mice compared with untreated rats, 3-methylcholanthrene-treated DBA/2 mice or guinea pigs. The two complementary radioimmunoassay methods are sensitive, efficient, and easily applicable for screening large number of tissue samples for MAb-defined cytochrome P-450 phenotype.  相似文献   

20.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At greater than 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70 chi), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58 chi) and P-450d (8 chi), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ah-responsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10(-6) to 10(-5) M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号