首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand how changes in gene regulatory networks lead to novel morphologies, we have analysed the evolution of a key target gene, RAD, controlling floral asymmetry. In Antirrhinum, flower asymmetry depends on activation of RAD in dorsal regions of the floral meristem by the upstream regulators CYC and DICH. We show that Arabidopsis, a species with radially symmetric flowers, contains six RAD-like genes, reflecting at least three duplications since the divergence of Antirrhinum and Arabidopsis. Unlike the situation in Antirrhinum, none of the Arabidopsis RAD-like genes are activated in dorsal regions of the flower meristem. Rather, the RAD-like genes are expressed in distinctive domains along radial or ab-adaxial axes, consistent with a range of developmental roles. Introduction of a RAD genomic clone from Antirrhinum into Arabidopsis leads to a novel expression pattern that is distinct from the expression pattern of RAD in Antirrhinum and from the endogenous RAD-like genes of Arabidopsis. Nevertheless, RAD is able to influence developmental targets in Arabidopsis, as ectopic expression of RAD has developmental effects in this species. Taken together, our results suggest that duplication and divergence of RAD-like genes has involved a range of cis- and trans-regulatory changes. It is possible that such changes led to the coupling of RAD to CYC regulation in the Antirrhinum lineage and hence the co-option of RAD had a role in the generation of flower dorsoventral asymmetry.  相似文献   

2.
CYCLOIDEA (CYC) and DICHOTOMA (DICH) are paralogous genes that determine adaxial (dorsal) flower identity in the bilaterally symmetric flowers of Antirrhinum majus (snapdragon). We show here that the duplication leading to the existence of both CYC and DICH in Antirrhinum occurred before the radiation of the Antirrhineae (the tribe to which snapdragon belongs). We find no additional gene duplications within Antirrhineae. Using explicit codon-based models of evolution in a likelihood framework, we show that patterns of molecular evolution after the duplication that gave rise to CYC and DICH are consistent with purifying selection acting at both loci, despite their known functional redundancy in snapdragon. However, for specific gene regions, purifying selection is significantly relaxed across DICH lineages, relative to CYC lineages. In addition, we find evidence for relaxed purifying selection along the lineage leading to snapdragon in one of two putative functional domains of DICH. A model of selection accounting for the persistence of paralogous genes in the absence of diversifying selection is presented. This model takes into account differences in the degree of purifying selection acting at the two loci and is consistent with subfunctionalization models of paralogous gene evolution.  相似文献   

3.
Evolution of regulatory interactions controlling floral asymmetry   总被引:1,自引:0,他引:1  
A key challenge in evolutionary biology is to understand how new morphologies can arise through changes in gene regulatory networks. For example, floral asymmetry is thought to have evolved many times independently from a radially symmetrical ancestral condition, yet the molecular changes underlying this innovation are unknown. Here, we address this problem by investigating the action of a key regulator of floral asymmetry, CYCLOIDEA (CYC), in species with asymmetric and symmetric flowers. We show that CYC encodes a DNA-binding protein that recognises sites in a downstream target gene RADIALIS (RAD) in Antirrhinum. The interaction between CYC and RAD can be reconstituted in Arabidopsis, which has radially symmetrical flowers. Overexpression of CYC in Arabidopsis modifies petal and leaf development, through changes in cell proliferation and expansion at various stages of development. This indicates that developmental target processes are influenced by CYC in Arabidopsis, similar to the situation in Antirrhinum. However, endogenous RAD-like genes are not activated by CYC in Arabidopsis, suggesting that co-option of RAD may have occurred specifically in the Antirrhinum lineage. Taken together, our results indicate that floral asymmetry may have arisen through evolutionary tinkering with the strengths and pattern of connections at several points in a gene regulatory network.  相似文献   

4.
Floral zygomorphy, the recurring evolution of a successful trait   总被引:10,自引:0,他引:10  
The flowers of the primitive angiosperm plants were radially symmetrical (actinomorphic). Flowers with bilateral symmetry (zygomorphic) evolved in several clades independently as an adaptation to specialized methods of pollination and played an important role in the diversification of flowering plants. In the model species Antirrhinum majus (snapdragon), the related genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) are key in the development of this trait. This raises the question of whether they played a role in the evolution of floral bilateral symmetry. To address this, the evolution of CYC in relation to the evolution of zygomorphy is being investigated. Phylogenetic and functional analyses of CYC-like genes are being carried out in groups either closely related to Antirhinum or in families where zygomorphy evolved as an independent event. In addition, the origin of zygomorphy is being studied by comparing the function of CYC-like genes in species with zygomorphic flowers with their function in species with radially symmetrical flowers.  相似文献   

5.
6.
Ancient asymmetries in the evolution of flowers   总被引:1,自引:0,他引:1  
Dorsoventral asymmetry in flowers is thought to have evolved many times independently as a specialized adaptation to animal pollinators. To understand how such a complex trait could have arisen repeatedly, we have compared the expression of a gene controlling dorsoventral asymmetry in Antirrhinum with its counterpart in Arabidopsis, a distantly related species with radially symmetrical flowers. We found that the Arabidopsis gene is expressed asymmetrically in floral meristems, even though they are destined to form symmetrical flowers. This suggests that, although the flowers of the common ancestor were probably radially symmetrical, they may have had an incipient asymmetry, evident at the level of early gene activity, which could have been recruited many times during evolution to generate asymmetric flowers.  相似文献   

7.
CYC-like genes are widely conserved in controlling floral dorsoventral asymmetry (zygomorphy) through persistent expression in corresponding domains in core eudicots. To understand how CYC-like gene expression is maintained during flower development, we selected Chirita heterotricha as a material and isolated the promoter sequences of the ChCYCIC and ChCYCID genes, homologs of CYC, by inverse polymerase chain reaction. Further promoter analyses led to the identification of a putative cis-regulatory element in each promoter matching the consensus DNA binding site for Antirrhinum CYC protein: GGCCCCTC at-165 for ChCYC1C, and GGCCCCCC at-163 for ChCYCID. This indicates that both the ChCYCIC and ChCYC1D genes have probably evolved autoregulatory loops to sustain their expression in developing flowers. We also isolated the coding and promoter sequences of the ChRAD gene, a homolog of Antirrhinum RAD. Promoter analysis showed that the ChRAD gene promoter also contained a putative CYC-binding site (GGCCCAC at -134). Therefore, ChRAD is likely a direct target of the ChCYC1 genes, which is similar to Antirrhinum RAD. These results imply that the establishment of floral zygomorphy in Chirita may have been achieved by the evolution of an autoregulatory loop for CYC-like genes,which was probably accompanied by simultaneous co-option of the RAD-like gene into their regulatory network.  相似文献   

8.
Dorsoventral asymmetry in flowers of Antirrhinum depends on expression of the cycloidea gene in dorsal regions of floral meristems. To determine how cycloidea might be regulated we analysed its expression in several contexts. We show that cycloidea is activated shortly after floral induction, and that in addition to flowers, cycloidea can be asymmetrically expressed in shoots, even though these shoots show no marked dorsoventral asymmetry. Shoots expressing cycloidea include secondary branches lying just below the inflorescence, and shoots of floricaula mutants. Asymmetric cycloidea expression may also be observed within organ primordia, such as the sepals of terminal flowers produced by centroradialis mutants. Later expression of cycloidea within flowers can be modified by mutations in organ identity genes. Taken together, the results suggest that cycloidea can respond to a common dorsoventral pre-pattern in the apex and that the specific effects of cycloidea on the flower depend on interactions with floral-specific genes.  相似文献   

9.
简要评述了被子植物花对称性遗传控制研究的最新进展。金鱼草中控制花背腹轴不对称性基因Cy cloidea(Cyc)和Dichotama(Dich)的克隆 ,为研究单对称花的遗传控制机理和进化历程提供了可能。在唇形目(Lamialess .l.)中的研究表明 ,在与金鱼草 (Antirrhinummajus)近缘的物种中 ,Cyc基因的同源基因可以采用相似的机制控制背腹轴上花器官的不对称性发育。最新的研究结果显示 ,在同金鱼草远缘的豆科植物 (Legu minosae)中 ,不仅存在Cyc基因的同源基因 ,而且它们也参与花背腹轴上不对称性的形成。参与花对称性控制的基因属于植物中一个新发现的基因家族———TCP结构域基因  相似文献   

10.
11.
12.
In angiosperms, individual lateral organs and whole flowers may develop asymmetrically along their dorsoventral axes. Dorsoventral asymmetry of Antirrhinum leaves requires activity of the Phantastica gene and other factors acting redundantly with it. We describe the effects of a mutation in the Handlebars gene, identified as an enhancer of the phantastica mutant phenotype. Genetic analysis suggests that Handlebars functions redundantly with Phantastica to promote dorsal fate in lateral organs and to maintain activity of stem cells within shoot apical meristems. Handlebars appears dispensable in vegetative development but is needed for asymmetry of petals along the dorsoventral axis of the flower as a whole. This suggests that common mechanisms may control dorsoventral asymmetry in lateral organ primordia and in floral meristems.  相似文献   

13.
14.
Flowers exhibit symmetrical patterns, and innate preferences for symmetry in pollinators like honeybees are documented. Most previous studies of symmetry preferences in honeybees, Apis mellifera, tested levels of asymmetry using artificial flowers or stimuli. Here we investigated the effect of flower asymmetry on flower preferences of honeybees in a novel approach using real flowers, incorporating their spectral properties and how the receivers process the visual signals. Importantly, we also tested the response of an ‘eavesdropping’ predator, the crab spider Thomisus spectabilis, that also utilizes the same flower to prey on honeybees. Flowers (Chrysanthemum frutescens) were manipulated to contain asymmetrical and symmetrical patterns, excluding olfactory cues. Both crab spiders and honeybees exhibited a significant preference for symmetrical flowers. Moreover, honeybees exhibited a significant preference for radial symmetry over bilateral symmetry, but no corresponding effect was recorded in crab spiders. Further analyses demonstrated that flower reflectance and orientation of the axis of symmetry did not affect crab spider decisions. Field observations on T. spectabilis revealed that the natural variation in C. frutescens symmetry had no effect on the choice of crab spiders. This indicates that spiders and honeybees may use other flower characteristics, for example, olfactory cues, together with flower symmetry, to make their foraging decisions.  相似文献   

15.
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.  相似文献   

16.
17.
Abstract CYC‐like genes are widely conserved in controlling floral dorsoventral asymmetry (zygomorphy) through persistent expression in corresponding domains in core eudicots. To understand how CYC‐like gene expression is maintained during flower development, we selected Chirita heterotricha as a material and isolated the promoter sequences of the ChCYC1C and ChCYC1D genes, homologs of CYC, by inverse polymerase chain reaction. Further promoter analyses led to the identification of a putative cis‐regulatory element in each promoter matching the consensus DNA binding site for Antirrhinum CYC protein: GGCCCCTC at ?165 for ChCYC1C, and GGCCCCCC at ?163 for ChCYC1D. This indicates that both the ChCYC1C and ChCYC1D genes have probably evolved autoregulatory loops to sustain their expression in developing flowers. We also isolated the coding and promoter sequences of the ChRAD gene, a homolog of Antirrhinum RAD. Promoter analysis showed that the ChRAD gene promoter also contained a putative CYC‐binding site (GGCCCAC at ?134). Therefore, ChRAD is likely a direct target of the ChCYC1 genes, which is similar to Antirrhinum RAD. These results imply that the establishment of floral zygomorphy in Chirita may have been achieved by the evolution of an autoregulatory loop for CYC‐like genes, which was probably accompanied by simultaneous co‐option of the RAD‐like gene into their regulatory network.  相似文献   

18.
The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum) flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号