首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫抗菌蛋白基因转录调控研究的新进展   总被引:5,自引:0,他引:5  
在自然或人为创伤和感染情况下,昆虫能迅速产生各种类型的抗菌因子,例如天蚕素(cecropin),果蝇抗菌蛋白(diptericin),天蚕抗菌蛋白(attacin)和防御素(defensin)等.这些活性多肽和蛋白从其被合成的脂肪体和某些血细胞中,分泌到血淋巴参与虫体对入侵物的免疫反应.抗菌多肽和蛋白的诱导、表达及其协同作用于外源微生物,构成昆虫先天性防卫免疫系统中极为重要的环节.近年的研究表明,昆虫的这种防卫免疫系统与哺乳动物急性期反应是相关的,特别是在有关基因表达的协调控制方面具有许多共同的基本特征.  相似文献   

2.
3.
Diptericin A is a member of a multigenic family of antibacterial peptides that are synthesized by larvae of Phormia terranovae (Diptera) in response to a bacterial injection or to injury. The 82-residue peptide is active only against a limited range of Gram-negative bacteria. Data presented suggest that the primary action of diptericin A is on the cytoplasmic membrane of growing bacteria.  相似文献   

4.
Antimicrobial peptides accumulated in the hemolymph in response to infection are a key element of insect innate immunity. The involvement of the fat body and hemocytes in the antimicrobial peptide synthesis is widely acknowledged, although release of the peptides present in the hemolymph from the immune cells was not directly verified so far. Here, we studied the presence of antimicrobial peptides in the culture medium of fat body cells and hemocytes isolated from the blue blowfly Calliphora vicina using complex of liquid chromatography, mass spectrometry, and antimicrobial activity assays. Both fat body and hemocytes are shown to synthesize and release to culture medium defensin, cecropin, diptericins, and proline-rich peptides. The spectra of peptide antibiotics released by the fat body and hemocytes partially overlap. Thus, the results suggest that insect fat body and blood cells are capable of releasing mature antimicrobial peptides to the hemolymph. It is notable that the data obtained demonstrate dramatic difference in the functioning of insect antimicrobial peptides and their mammalian counterparts localized into blood cells’ phagosomes where they exert their antibacterial activity.  相似文献   

5.
The present study deals with molecular nature and peculiarities of functioning of two main protective systems of larvae Lucilia sericata--the antimicrobial compounds of hemolymph and of the excretion released by feeding larvae into environmental. There are identified a number of inducible antibacterial peptides including defensins (3844, 4062, and 4117 Da), P-peptide (3043 Da), and four new polypeptides (3235, 3702, 3746, and 3768 Da) In hemolymph of the larvae submitted to bacterial infestation, by the chromatomasspectrometry methods. The excretion of larvae Lucilia sericata contains peptides analogous or identical to hemolymph antibacterial peptides (diptericins: 8882 Da and 9025 Da), high molecular compounds of peptide nature (6466 Da, 6633 Da, 5772 Da, 8631 Da, etc.) differing from the known hemolymph components and low molecular compounds (130-700 Da). Spectrum of excretion bactericidal activity includes various groups of bacterial including the most actual pathogen from medical point of view--the meticillin-resistant Staphylococcus aureus, unlike the hemolymph that does not have antistaphylococcal activity. The excretion components suppressing growth and development of this staphylococcus are represented by substances of the low molecular nature (from 160 to 1020 Da). The performed studies characterize the strategies used by "surgical maggots" for protection from pathogens and for suppression of microbial competitors and allow better understanding of molecular mechanisms of larval therapy of purulent infectious diseases. These studies in perspective can serve the basis for creation of the principally new drugs for struggle with usual and antibiotics-resistant bacterial infections.  相似文献   

6.
7.
In response to microbial infection or mechanical injury, larvae of the fly, Phormia terranovae (Diptera), can induce de novo production of a group of antibacterial proteins including: peak I protein, diptericin A, diptericin B, diptericin C, and peak V protein. Administration of L-canavanine at the time of mechanical injury results in the incorporation of this arginine antagonist into these proteins. Canavanine replacement for arginine causes a total loss of detectable antibacterial activity for diptericin B and diptericin C, whereas diptericin A and peak V protein are severely inhibited. This loss in biological activity occurs in spite of the fact that canavanine stimulates induced protein synthesis. Analysis of the hydrolysate of diptericin A reveals that one-third of the 3 arginyl residues are replaced by canavanine. This investigation provides the first evidence that canavanine incorporation into a protein can impair its function.  相似文献   

8.
A number of research have proven that antimicrobial peptides are of greatest potential as a new class of antibiotics. Antimicrobial peptides and cell-penetrating peptides share some similar structure characteristics. In our study, a new peptide analog, APP (GLARALTRLLRQLTRQLTRA) from the cell-penetrating peptide ppTG20 (GLFRALLRLLRSLWRLLLRA), was identified simultaneously with the antibacterial mechanism of APP against Salmonella typhimurium and Streptococcus pyogenes. APP displayed potent antibacterial activity against Gram-negative and Gram-positive strains. The minimum inhibitory concentration was in the range of 2 to 4 μM. APP displayed higher cell selectivity (about 42-fold increase) as compared to the parent peptide for it decreased hemolytic activity and increased antimicrobial activity. The calcein leakage from egg yolk l-α-phosphatidylcholine (EYPC)/egg yolk l-α-phosphatidyl-dl-glycerol and EYPC/cholesterol vesicles demonstrated that APP exhibited high selectivity. The antibacterial mechanism analysis indicated that APP induced membrane permeabilization in a kinetic manner for membrane lesions allowing O-nitrophenyl-β-d-galactoside uptake into cells and potassium release from APP-treated cells. Flow cytometry analysis demonstrated that APP induced bacterial live cell membrane damage. Circular dichroism, fluorescence spectra, and gel retardation analysis confirmed that APP interacted with DNA and intercalated into the DNA base pairs after penetrating the cell membrane. Cell cycle assay showed that APP affected DNA synthesis in the cell. Our results suggested that peptides derived from the cell-penetrating peptide have the potential for antimicrobial agent development, and APP exerts its antibacterial activity by damaging bacterial cell membranes and binding to bacterial DNA to inhibit cellular functions, ultimately leading to cell death.  相似文献   

9.
Various nonglycosylated analogs were designed in order to explore the role of glycosylation in formaecin I, an antibacterial glycopeptide of insect origin. The functional behavior of a designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I was found to be similar to that of native glycosylated peptide. Both the peptides showed similar antibacterial activities against Escherichia coli and Salmonella strains. The designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I has low binding affinity to LPS identical to that of native glycopeptide, formaecin I. Both the peptides have similar killing kinetics and are nontoxic to erythrocytes. Formaecin I and designed nonglycosylated (P(7),endo P(8a),DeltaT(11))formaecin I have no definite conformational features associated with them. The glycosylated residue of threonine in formaecin I and proline residues in designed peptide [(P(7),endo P(8a),DeltaT(11))formaecin I], possibly help in stabilizing the correct conformation that facilitates presentation of the peptide to its receptor. It is evident that a functionally equivalent nonglycosylated analog of native glycosylated antibacterial peptide can be designed by strategically modifying the sequence.  相似文献   

10.
Injection of heat-killed bacteria into larvae of the large tenebrionid beetle Zophobas atratus (Insecta, Endopterygota, Coleoptera) results in the appearance in the hemolymph of a potent antibacterial activity as evidenced by a plate growth inhibition assay. We have isolated three peptides (A-C) from this immune hemolymph which probably account for most of this activity. Their primary structures were established by a combination of peptide sequencing and molecular mass determination by mass spectrometry. Peptide A, which is bactericidal against Gram-negative cells, is a 74-residue glycine-rich molecule with no sequence homology to known peptides. We propose the name coleoptericin for this novel inducible antibacterial peptide. Peptides B and C are isoforms of a 43-residue peptide which contains 6 cysteines and shows significant sequence homology to insect defensins, initially reported from dipteran insects. This peptide is active against Gram-positive bacteria. The results are discussed in connection with recent studies on inducible antibacterial peptides present in the three other major orders of the endopterygote clade of insects: the Lepidoptera, Diptera, and Hymenoptera.  相似文献   

11.
Changes in the peptide composition of hemolymph of Galleria mellonella larvae induced by their immunization have been studied, and some new peptides have been found. The composition of fractions exhibiting antibacterial activity was investigated. Known antibacterial peptides have been found in the hemolymph of control larvae and those immunized with bacteria.  相似文献   

12.
Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 (Thr(1)(2)) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and alpha-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity  相似文献   

13.
Two major antibacterial peptides were isolated and purified from immunized larval hemolymph of Agrius convolvuli. Acid extraction, gel filtration, ultrafiltration, and reversed‐phase FPLC were used for purification of peptides. These peptides had similar molecular mass and amino acid composition. Moreover, 21 of the first 23 N terminal residues were identical. The peptides were highly homologous with cecropin D in size and primary sequence, and named Agrius cecropin D1 and D2. The molecular masses of Agrius cecropin D1 and D2 were 3,879.39 and 3,839.27, respectively. In antibacterial and hemolytic assays, Agrius cecropin D showed potent antibacterial activities against a panel of Gram positive and negative bacteria without hemolytic activity against human red blood cells. Notably, our antibacterial assay revealed Agrius cecropin D possessed stronger or at least equivalent activities against B. megaterium than cecropin A. It suggests that Agrius cecropin D, which has an alternative structure from cecropin D, could be the model for the development of peptide antibiotics. Arch. Insect Biochem. Physiol. 41:178–185, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.  相似文献   

15.
Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.  相似文献   

16.
We report on the synthesis, biological function, and a plausible mode of action of a new group of lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived from positively charged peptides containing d- and l-amino acids (diastereomers) that are palmitoylated (PA) at their N terminus. The peptides investigated have the sequence K(4)X(7)W, where X designates Gly, Ala, Val, or Leu (designated d-X peptides). The data revealed that PA-d-G and PA-d-A gained potent antibacterial and antifungal activity despite the fact that both parental peptides were completely devoid of any activity toward microorganisms and model phospholipid membranes. In contrast, PA-d-L lost the potent antibacterial activity of the parental peptide but gained and preserved partial antifungal activity. Interestingly, both d-V and its palmitoylated analog were inactive toward bacteria, and only the palmitoylated peptide was highly potent toward yeast. Both PA-d-L and PA-d-V lipopeptides were also endowed with hemolytic activity. Mode of action studies were performed by using tryptophan fluorescence and attenuated total reflectance Fourier transform infrared and circular dichroism spectroscopy as well as transmembrane depolarization assays with bacteria and fungi. The data suggest that the lipopeptides act by increasing the permeability of the cell membrane and that differences in their potency and target specificity are the result of differences in their oligomeric state and ability to dissociate and insert into the cytoplasmic membrane. These results provide insight regarding a new approach of modulating hydrophobicity and the self-assembly of non-membrane interacting peptides in order to endow them with both antibacterial and antifungal activities urgently needed to combat bacterial and fungal infections.  相似文献   

17.
宫霞  胡树凯  乐国伟 《昆虫学报》2007,50(12):1212-1218
通过体壁损伤和感染大肠杆菌同时诱导家蝇Musca domestica幼虫产生免疫血淋巴,经沸水浴热变性,透析浓缩处理,然后经Tricine-SDS-PAGE得到诱导前后家蝇幼虫血淋巴中蛋白差异表达条带,将该条带电泳回收,复性,抗菌活性检测等步骤,分离纯化得到抗菌肽MDL-2,其分子中富含Pro,Gly和碱性氨基酸,分子量为11 kD,对革兰氏阴性菌Escherichia coli和革兰氏阳性菌Staphylococcus aureus均有较强抗性,因此电泳制备抗菌肽的方法为此类生物微量活性物质的分离纯化提供一种行之有效的途径。通过MDL-2对大肠杆菌和金黄色葡萄球菌通透性和透射电镜超微结构的图谱分析,MDL-2首先与细菌的外膜结合,然后抗菌肽形成柔性的两亲空间构象与细胞内膜作用,扰乱了膜脂分子的排列,改变了细胞膜的通透性,影响细胞膜的结构和功能,细胞膜上形成了许多孔道,同时造成细胞内的原生质扩散,并从孔道向胞外渗漏,影响了细菌的代谢系统,最终引起细胞膜破碎,细胞完全解体,从而起到抑菌杀菌作用。  相似文献   

18.
Antimicrobial peptide LL-37 plays an important role in human body's first line of defense against infection. To better understand the mechanism of action, it is critical to elucidate the three-dimensional structure of LL-37 in complex with bacterial membranes. We present a bacterial expression system that allows the incorporation of (15)N and other isotopes into the polypeptide for nuclear magnetic resonance (NMR) analysis. The DNA sequence encoding full-length LL-37 was chemically synthesized and cloned into the pET-32a(+) vector for protein expression in Escherichia coli strain BL21(DE3). The peptide was expressed directly as a His-tagged fusion protein without the inclusion of its precursor sequence. LL-37 was released from the fusion by formic acid cleavage at the AspPro dipeptide bond and separated from the carrier thioredoxin by affinity chromatography and reverse-phase HPLC. The peptide was identified by polyacrylamide gel electrophoresis and further confirmed by mass spectrometry and NMR spectroscopy. Antibacterial activity assays showed that the recombinant LL-37 purified from the bacterial source is as active as that from chemical synthesis. According to the antimicrobial peptide database (), 111 peptides contain a Met residue, but only 5 contain the AspPro pair, indicating a broader application of formic acid than cyanogen bromide in cleaving fusion proteins. The successful application to the expression of the 66-residue cytoplasmic tail of human MUC1 indicates that the system can be applied to other peptides as well.  相似文献   

19.
Antibacterial peptides have potential as novel therapeutic agents for bacterial infections. Aurein 1.2 is one of the smallest antibacterial peptides extracted from an anuran. LLAA is a more active analogue of aurein 1.2. Antibacterial peptides usually accomplish their function by interacting with bacterial membrane selectively. In this study, we tried to find the reasons for the stronger antibacterial activity of LLAA compared with aurein 1.2. For this purpose, the interaction of aurein 1.2 and LLAA with dipalmitoylphosphatidylcholine (DPPC) was investigated by molecular dynamics (MD) simulation. In addition, the structure of peptides and their antibacterial activity were investigated by circular dichroism (CD) and dilution test method, respectively. MD results showed that LLAA is more flexible compared with aurein 1.2. Furthermore, LLAA loses its structure more than aurein 1.2 in the DPPC bilayer. A higher amount of water molecules penetrate into bilayer in the presence of LLAA relative to aurein 1.2. According to the antibacterial result that indicated LLAA is remarkably more active than aurein 1.2, it can be concluded that flexibility of the peptide is a determining factor in antibacterial activity. Probably, flexibility of the peptides facilitates formation of effective pores in the lipid bilayer.  相似文献   

20.
The synthetic glycopeptides are interesting model systems to study the effect of O-glycosylation in modulating their function and structure. A series of glycosylated analogs of two antibacterial peptides, formaecin I and drosocin, were synthesized by varying the nature of sugar and its linkage with bioactive peptides to understand the influence of structure variation of glycosylation on their antibacterial activities. Higher antibacterial activities of all glycopeptides compared to their respective non-glycosylated counterparts emphasize in part the importance of sugar moieties in functional implications of these peptides. The consequences of the unique differences among the analogs were apparent on their antibacterial activities but not evident structurally by circular dichroism studies. We have shown that differently glycosylated peptides exhibit differential effect among each other when tested against several Gram-negative bacterial strains. The change of monosaccharide moiety and/or its anomeric configuration in formaecin I and drosocin resulted into decrease in the antibacterial activity in comparison to that of the native glycopeptide, but the extent of decrease in antibacterial activity of glycosylated drosocin analogs was less. Probably, the variation in peptide conformation arising due to topological dissimilarities among different sugars in the same peptide resulting in possible modulation in binding properties appears to be responsible for differences in their antibacterial activities. Indeed, these effects of glycosylation are found to be sequence-specific and depend in the milieu of amino acid residues. Interestingly, none of the carbohydrate variants affected the basic property of these peptides, which is non-hemolytic and non-toxicity to eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号