首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that Arabidopsis vegetative storage protein (AtVSP) is an acid phosphatase that has anti-insect activity in in vitro feeding assays [Liu et al., 2005. Plant Physiology 139, 1545-1556]. To investigate the functionality of AtVSP in planta as an anti-insect defense protein, we produced AtVSP-overexpressing as well as AtVSP-silenced transgenic Arabidopsis lines, and evaluated impact on the polyphagous American grasshopper Schistocerca americana. Grasshoppers showed no significant difference in weight gain and growth rate when feeding on wild type, overexpressing, or silenced lines, respectively. In addition, AtVSP protein was undetectable in either the midgut or frass of grasshoppers reared on transgenic plants suggesting that AtVSP was unable to withstand proteolytic degradation. To determine the stability of the AtVSP protein in grasshopper digestive canal, midgut extracts from various nymphal stages were incubated with bacterially expressed AtVSP for different periods of time. AtVSP was hydrolyzed rapidly by grasshopper midgut extract, in stark contrast with its fate when incubated with cowpea bruchid midgut extract. Multiple proteases have been detected in the midgut of grasshoppers, which may play important roles in determining the insect response to AtVSP. Results indicate that stability of an anti-insect protein in insect guts is a crucial property integral to the defense protein.  相似文献   

2.
Photorhabdus luminescens is a bacterium which is mutualistic with entomophagous nematodes and which secretes high-molecular-weight toxin complexes following its release into the insect hemocoel upon nematode invasion. Thus, unlike other protein toxins from Bacillus thuringiensis (δ-endotoxins and Vip’s), P. luminescens toxin (Pht) normally acts from within the insect hemocoel. Unexpectedly, therefore, the toxin complex has both oral and injectable activities against a wide range of insects. We have recently fractionated the protein toxin and shown it to consist of several native complexes, the most abundant of which we have termed Toxin complex a (Tca). This complex is highly active against the lepidopteran Manduca sexta. In view of the difference in the normal mode of delivery of P. luminescens toxin and the apparent communality in the histopathological effects of other gut-active toxins from B. thuringiensis, as well as cholesterol oxidase, we were interested in investigating the effects of purified Tca protein on larvae of M. sexta. Here we report that the histopathology of the M. sexta midgut is similar to that for other novel midgut-active toxins. Following oral ingestion of Tca by M. sexta, we observed an acceleration in the blebbing of the midgut epithelium into the gut lumen and eventual lysis of the epithelium. The midgut shows a similar histopathology following injection of Tca into the insect hemocoel. These results not only show that Tca is a highly active oral insecticide but also confirm the similar histopathologies of a range of very different gut-active toxins, despite presumed differences in modes of action and/or delivery. The implications for the mode of action of Tca are discussed.  相似文献   

3.
A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.  相似文献   

4.
5.
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.  相似文献   

6.
Bt toxins ingested by insect pests can bind to midgut receptors and cause death, although several steps in this process remain unclear. Multiple Bt toxin receptors have been identified in Lepidoptera, including a cadherin-like protein (CaLP), which is central to several models explaining Bt toxins’ mode of action. Mutations in the Plutella xylostella ATP-dependent binding cassette transporter C2 (Px-abcc2), rather than CaLP, are genetically linked with Bt Cry1Ac resistance. Here we expressed Px-abcc2 in Drosophila and performed larval bioassays to determine whether this protein acts as an effective Bt receptor. Cry1Ac had no effect on larvae expressing Px-abcc2 in salivary glands, yet larvae expressing Px-abcc2 in the midgut were highly susceptible to both Cry1Ac protoxin and trypsin activated toxin. Furthermore, the CaLP orthologue has been lost from the Drosophila genome, making this a useful system for investigating the role of CaLP peptides from Manduca sexta (CR12-MPED), which are known to act as Bt synergists in larval feeding assays. Drosophila larvae expressing Px-ABCC2 in the midgut were fed LD50 concentrations of Cry1Ac toxin or protoxin, plus purified CR12-MPED cloned from M. sexta or P. xylostella. The M. sexta CR12-MPED protein acted synergistically with Cry1Ac protoxin and activated toxin significantly more effectively than the P. xylostella peptide. This work demonstrates ABCC2 is the major functional Cry1Ac receptor for P. xylostella and the importance of CaLP proteins in Bt mode of action may vary between different lepidopteran species.  相似文献   

7.
8.
Insect gut immunity is the first line of defense against oral infection. Although a few immune-related molecules in insect intestine has been identified by genomics or proteomics approach with comparison to well-studied tissues, such as hemolymph or fat body, our knowledge about the molecular mechanism underlying the gut immunity which would involve a variety of unidentified molecules is still limited. To uncover additional molecules that might take part in pathogen recognition, signal transduction or immune regulation in insect intestine, a T7 phage display cDNA library of the silkworm midgut is constructed. By use of different ligands for biopanning, Translationally Controlled Tumor Protein (TCTP) has been selected. BmTCTP is produced in intestinal epithelial cells and released into the gut lumen. The protein level of BmTCTP increases at the early time points during oral microbial infection and declines afterwards. In vitro binding assay confirms its activity as a multi-ligand binding molecule and it can further function as an opsonin that promotes the phagocytosis of microorganisms. Moreover, it can induce the production of anti-microbial peptide via a signaling pathway in which ERK is required and a dynamic tyrosine phosphorylation of certain cytoplasmic membrane protein. Taken together, our results characterize BmTCTP as a dual-functional protein involved in both the cellular and the humoral immune response of the silkworm, Bombyx mori.  相似文献   

9.
Membrane-bound alkaline phosphatases (mALPs, EC 3.1.3.1) in the insect midgut have been reported as functional receptors for Cry toxins from the bacterium Bacillus thuringiensis. We previously reported the identification of HvALP in the midgut of Heliothis virescens larvae as a Cry1Ac-binding protein that is down-regulated in Cry1Ac-resistant insects. To further characterize HvALP, we localized mALP protein to foregut and midgut tissues using anti-mALP serum and then cloned five mALPs from H. virescens larval midgut. All five clones displayed high levels of sequence identity (above 90%), suggesting that they may represent allelic variants, and grouped with other lepidopteran mALPs in sequence alignments. All these cloned ALPs were predicted to contain a glycosylphosphatidylinositol (GPI) anchor and were named HvmALP1–5. We expressed two of the most diverse HvmALPs in a heterologous system to test binding of Cry1Ac and recognition by HvALP cross-reacting antiserum. Our data highlight the importance of glycosylation for Cry1Ac binding to HvALP and suggest that, depending on glycosylation, all the identified HvmALPs may be synonymous with HvALP, the Cry1Ac-binding phosphatase identified in H. virescens midgut epithelium.  相似文献   

10.
《Journal of Asia》2019,22(3):723-727
Peroral inoculation of entomopoxvirus (EV) spindles, microstructures composed of the protein fusolin, enhances the infectivity of some insect viruses by disrupting the physical barrier against microbe infection, the peritrophic matrix, in the insect midgut. Here, we examined the temporal persistence of spindles of Anomala cuprea EV (ACEV) that infect Coleopteran species in Bombyx mori larva midgut because spindle solubility over time in the midgut is closely associated with the degree of the enhancement of microbe infectivity by fusolin. A number of ACEV spindles fed to B. mori larvae were retained in the digestive systems even 20 h after the completion of feeding spindles, and a number of spindles were found to be excreted still almost intact in feces under a light microscope. In an in vitro experiment, most ACEV spindles remained intact in B. mori midgut juice 1 h after the start of incubation and some of spindles appeared even overnight in contrast to Bombyx mori nucleoplyhedrovirus polyhedra, which were immediately dissolved in midgut juice. These results suggest spindles are not generally dissolved readily in the midgut of many insects. The difficulty in solubility of ACEV spindles is considered to be mainly due to that fusolin contains many cysteine residues that form a 3D network of disulfide bonds between fusolin dimers. To use spindles at a low cost as additives in microbial insecticides, increasing the solubility of spindles by protein engineering is important to utilize full spindles inoculated.  相似文献   

11.
Sugar conjugation is a major pathway for the inactivation and excretion of both endogenous and exogenous compounds. We report here the molecular cloning and functional characterization of a phenol UDP-glucosyltransferase (UGT) from the silkworm, Bombyx mori, which was named BmUGT1. The complete cDNA clone is 1.6 kb, and the gene is expressed in several tissues of fifth-instar larvae, including fat body, midgut, integument, testis, silk gland and haemocytes. The predicted protein comprises 520 amino acids and has approximately 30% overall amino-acid identity with other members of the UGT family. The most conserved region of the protein is the C-terminal half, which has been implicated in binding the UDP-sugar. BmUGT1 was expressed in insect cells using the baculovirus expression system, and a range of compounds belonging to diverse chemical groups were assessed as potential substrates for the enzyme. The expressed enzyme had a wide substrate specificity, showing activity with flavonoids, coumarins, terpenoids and simple phenols. These results support a role for the enzyme in detoxication processes, such as minimizing the harmful effects of ingested plant allelochemicals. This work represents the first instance where an insect ugt gene has been associated with a specific enzyme activity.  相似文献   

12.
《Insect Biochemistry》1987,17(4):561-572
Ligated tubes of Calpodes ethlius (Lepidoptera:Hesperiidae) larval midgut with normal (i.e. apical secretions into the lumen and basal into the hemocel or medium) or inverted orientation (i.e. apical secretions into the hemocoel or medium and basal into the lumen) were incubated in artificial hemolymph in the presence of [35S]methionine to investigate protein synthesis and vectorial secretion. The midgut synthesizes and secretes at least eight polypeptides basally and seven apically. The tissue also synthesizes many other polypeptides that are not released at either surface. Two dimensional analysis of proteins labeled in vitro and in vivo showed that (a) proteins synthesized in vitro are the same as those synthesized in vivo, (b) different proteins are secreted on apical and basal surfaces, (c) in vitro apical secretions are the same as in vivo luminal proteins, (d) at least two of the basal secretions can be demonstrated in the hemolymph labeled in vivo. Almost all basal secretions showed immunological similarity with hemolymph proteins as observed by immunoprecipitation and fluorography. Arylphorin is a main hemolymph protein synthesized by the midgut. Midgut arylphorin has been identified by its precipitation by antibodies to hemolymph arylphorin. We conclude that insect midgut has bi-directional secretion. Luminal proteins (presumably digestive enzymes and perhaps goblet cell luminal contents) are carried to the apical face. A different set of proteins are carried basally to the hemolymph.  相似文献   

13.
Anticarsia gemmatalis is a lepidopteran insect susceptible to A. gemmatalis nucleopolyhedrovirus (AgNPV), which is being used in a large scale, in Brazil, as a biological control agent against this serious soybean pest. Baculovirus usually infects its insect host through the midgut epithelium. In the midgut, it replicates in the nuclei of epithelial cells, producing progeny virus and establishing systemic infection. The AgNPV infection of A. gemmatalis midgut was studied using light and electron microscopy. It was observed that AgNPV enters the midgut mainly through columnar cells. Although the virus was not found in the nuclei of columnar cells until late on infection, it is believed that these cells are the primary sites of infection and replication. This fact can be explained by the continuous regeneration of the midgut epithelium. Besides, the infection may be occurring in isolated cells, making it more difficult to be visualized by electron microscopy. At 48 h post infection, hemocytes and tracheoblasts are infected and polyhedra are formed later in these cells, which are the secondary sites of infection.  相似文献   

14.
Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 104 s−1 m−1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control.  相似文献   

15.
Cell death, proliferation, and differentiation in some developmental stages of insects have been studied in the midgut of ametabolous, which undergo only continuous growth, and holometabolous, which undergo complete metamorphosis. However, in hemimetabolous insects, evolutionarily intermediate between ametabolous and holometabolous, midgut reorganization during the post-embryonic development has been poorly studied. The present study evaluates the post-embryonic development of the midgut of a hemimetabolous insect, Podisus nigrispinus, to test the hypothesis that these insects have programmed cell death and proliferation followed by differentiation of regenerative cells during midgut growth from nymphs to adult. The morphometrical data showed a 6-fold increase in midgut length from the first instar nymph to the adult, which did not result from an increase in the size of the midgut cells, suggesting that the growth of the midgut occurs by an increase in cell number. Cell death was rarely found in the midgut, whereas proliferation of regenerative cells occurred quite frequently. The growth of the midgut of P. nigrispinus appears to result from the proliferation of regenerative cells present in the epithelium; unlike ametabolous and holometabolous insects, the midgut of P. nigrispinus does not undergo extensive remodeling, as shown by the low frequency of digestive cell death.  相似文献   

16.
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.  相似文献   

17.
Spodoptera frugiperda β-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against β-1,3-glucan (laminarin), but cannot hydrolyze yeast β-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive β-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of β-1,3-glucanases and β-glucan-binding protein supports the assumption that the β-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived β-1,3-glucanases by the loss of an extended N-terminal region and the β-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells.  相似文献   

18.
Endogenous peptide regulators of insect physiology and development are presently being considered as potential biopesticides, but their efficacy by oral delivery cannot be easily anticipated because of the limited information on how the insect gut barrier handles these kind of molecules. We investigated, in Bombyx mori larvae, the permeability properties of the two components of the intestinal barrier, the peritrophic membrane (PM) and the midgut epithelium, separately isolated and perfused in conventional Ussing chambers. The PM discriminated compounds of different dimensions but was easily crossed by two small peptides recently proposed as bioinsecticides, the neuropeptide proctolin and Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF), although their flux values indicated that the permeability was highly affected by their steric conformation. To date, there is very little functional data available on how peptides cross the insect intestinal epithelium, but it has been speculated that peptides could reach the haemocoel through the paracellular pathway. We characterized the permeability properties of this route to a number of organic molecules, showing that B. mori septate junction was highly selective to both the dimension and the charge of the permeant compound. Confocal images of whole-mount midguts incubated with rhodamine(rh)-proctolin or fluorescein isothiocyanate (FITC)-Aea-TMOF added to the mucosal side of the epithelium, revealed that rh-proctolin did not enter the cell and crossed the midgut only by the paracellular pathway, while FITC-Aea-TMOF did cross the cell apical membrane, permeating also through the transcellular route.  相似文献   

19.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

20.
It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC3(5) and 125I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera. The permeabilizing activity was significantly higher with BBMV from the posterior region than with the one observed in the anterior region in both insect species. Instead, 125I-Cry1Ac bound specifically to BBMV from the two midgut regions, with no significant differences in the binding parameters between the anterior and posterior regions within an insect species. N-acetylgalactosamine inhibition patterns on pore formation and binding differed between anterior and posterior midgut regions and between species, providing evidence of a multifaceted involvement of the sugar in the Cry1Ac mode of action. The analysis of binding and pore formation in different midgut regions could be an effective method to study differences in the mode of action of Cry1Ac toxin in different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号