首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Changes in the content of constitutive and inducible proteins of the family of heat shock 70 kDa proteins (HSP70) caused by heat shock in human neutrophils, white blood cells with an atypically short lifespan, which provide a nonspecific defense of the organism against bacterial pathogens, have been studied. An analysis of the intracellular content of the constitutive and inducible HSP70 proteins by flow cytometry revealed a biphasic dynamics of changes in the protein level, which was characterized by an increase in the protein level immediately after heat shock followed by a decrease within 15–30 min after the termination of heat treatment. Because the inhibitor of protein synthesis cycloheximide did not change the dynamics profile, it was assumed that the increase in the HSP70 level is related not to the de novo synthesis of these proteins but to conformational changes of HSP70 molecules and an increased accessibility of some epitopes for antibody binding. Using a panel of antibodies specific to the N-terminal ATP-binding or the C-terminal substrate-binding domains of the protein, it was shown by cell immunofluorescence and flow cytometry that the heat shock-associated increase in the intracellular HSP70 level results from an increased efficiency of the binding of antibodies recognizing the substrate-binding domain. It was also demonstrated that the decrease in the intracellular HSP70 level after the heat shock, may be partially due to a release into the extracellular space of both the constitutive and inducible HSP70 proteins, which is regulated with the involvement of ABC-transporters.  相似文献   

3.
Heat shock response of Dictyostelium   总被引:24,自引:0,他引:24  
In response to a shift from 22 to 30°C the relative rate of synthesis of a small number of proteins is dramatically increased in Dictyostelium discoideum. The cells neither grow nor develop at this temperature but die slowly with a half-life of 18 hr. The major protein synthesized in response to a heat shock to 30°C in either growing cells or developing cells has an apparent molecular weight of 70,000 (70K). An increase in the relative rate of synthesis of 70K can be seen as early as 20 min following heat shock. Synthesis of 70K remains high for 4 hr at 30°C and then decreases. Similar kinetics of 70K synthesis occur during recovery at 22°C following a 1-hr heat shock. RNA synthesis during the first half-hour of heat shock is essential for the high rate of 70K measured 2 hr later. By isoelectric focusing the 70K protein can be separated into two spots, one of which overlaps one of the major heat shock proteins of Drosophila melanogaster. The relative rate of synthesis of several other proteins (82K, 60K, 43K) increases less dramatically in Dictyostelium during heat shock at 30°C. A heat shock to 34°C results in rapid synthesis of these proteins but not of 70K. The relative rates of synthesis of most other proteins made at 22°C decreases, most notably that of actin. Synthesis of heat shock proteins at 30°C does not significantly affect viability at 30°C but dramatically prolongs the period of time the cells can survive at 34°C. Thus, 30°C appears to be a stasis condition for Dictyostelium which elicits a response essential for protection from lethal temperatures. The similarity of the heat shock response in Dictyostelium to that in Drosophila and vertebrate cells suggests that certain aspects of the response may be universal in eukaryotes.  相似文献   

4.
Diapausing pharate first instars of the gypsy moth, Lymantria dispar, respond to high temperature (37–41°C) by suppressing normal protein synthesis and synthesizing a set of seven heat shock proteins with Mrs of 90,000, 75,000, 73,000, 60,000, 42,000, 29,000, and 22,000 as determined by SDS-PAGE. During recovery at 25°C from heat shock, synthesis of the heat shock proteins gradually decreases over a period of 6 h, while normal protein synthesis is restored. A subset of these same heat shock proteins is also expressed during recovery at 4°C or 25°C from brief exposures to low temperature (-10 to 20°C), and its expression is more intense with increased severity of cold exposure. During recovery at 4°C after 24 h at ?20°C, both 90,000 and 75,000 Mr heat shock proteins are expressed for more than 96 h. While normal protein synthesis is suppressed during heat shock and recovery from heat shock, normal protein synthesis coincides with synthesis of the heat shock proteins during recovery from low temperatures, thus implying that expression of the heat shock proteins is not invariably linked to suppression of normal protein synthesis. Western transfer, using a monoclonal antibody that recognizes the inducible form of the human 70,000 Mr heat shock protein, demonstrates that immunologically related proteins in the gypsy moth are expressed at 4°C and during recovery from cold and heat shock.  相似文献   

5.
6.
《Research in virology》1991,142(1):25-31
Three major Mayaro virus proteins of 62, 50 and 34 kDa were detected in Aedes albopictus cells after 48 h postinfection at 28°C. When the infected cells were shifted from 28 to 37°C for 90 min (heat shock conditions), the synthesis of two major heat shock proteins (HSP) 82 and 70 kDa was induced concomitantly with strong inhibition of virus and normal protein synthesis. Total cellular RNA was isolated from mock and infected cells incubated at 28°C or under heat shock. Northern blot analysis with HSP genomic probes from Drosophila sp showed that (1) the probe for HSP 82 hybridized with an RNA of 2.6 kb present only in heat-shocked cells, (2) the HSP 70 probe hybridized with RNA species of 2.5 kb, present only in RNA from heat-shocked cells. These results showed that Mayaro virus was not able to alter the reprogrammation of gene expression induced by heat shock in A. albopictus cells.  相似文献   

7.
We examined the influence of overexpression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor ofEscherichia coli, on DNA supercoiling and induction of heat shock proteins. Cells were transformed with a plasmid carrying the structural gene for LetD protein under control of thetac promoter, and LetD protein was induced by adding isopropylβ-d-thiogalactopyranoside (IPTG) to the culture medium. Analysis by agarose gel electrophoresis in the presence of chloroquine revealed relaxation of plasmid DNA in cells depending on the concentration of IPTG employed for induction. Protein pulse-labeling experiments with [35S]methionine and cysteine revealed that synthesis of DnaK and GroEL proteins was also induced by IPTG, and concentrations necessary for DNA relaxation and induction of the heat shock proteins were much the same. Expression of mutant LetD protein lacking two amino acid residues at the C-terminus induced neither DNA relaxation nor the synthesis of DnaK and GroEL proteins. Induction of wild-type LetD protein but not mutant LetD protein markedly enhanced synthesis ofσ 32. We interpret these results to mean that DNA relaxation in cells caused by the expression of LetD protein induces heat shock proteins via increased synthesis ofσ 32.  相似文献   

8.
9.
10.
《Insect Biochemistry》1989,19(7):679-686
The evolutionary conservation of the heat shock response suggests that plasmids containing promoters from Drosophila heat shock protein (hsp) genes will be useful in the development of gene transfer procedures for cell lines representing a variety of insect species. Conditions for induction of endogenous hsp genes and for expression of the chloramphenicol acetyltransferase (CAT) gene regulated by the Drosophila hsp 70 promoter were examined in Aedes albopictus (mosquito) cells. Five hsps, ranging in size from 27,000 to 90,000 D, were induced in A. albopictus cells during incubation at 41°C in medium containing [35S]methionine. Relative synthesis of these proteins at 37 and 41°C indicated that Aedes hsp 66 is homologous to Drosophila hsp 70. Detection of CAT activity in transfected mosquito cells was enhanced 10-fold under heat shock conditions (6 h, 41°C) based on maximal expression of hsp 66, relative to conditions defined for expression of hsp 70 in Drosophila cells. Analysis of the endogenous heat shock response may be essential to the optimal use of plasmids containing the Drosophila hsp 70 promoter with other insect cell types.  相似文献   

11.
Conditions are described for the heat shock acquisition of thermotolerance, peroxide tolerance and synthesis of heat shock proteins (hsps) in the Antarctic, psychrophilic yeast Candida psychrophila. Cells grown at 15°C and heat shocked at 25°C (3 h) acquired tolerance to heat (35°C) and hydrogen peroxide (100 mM). Novel heat shock inducible proteins at 80 and 110 kDa were observed as well as the presence of hsp 90, 70 and 60. The latter hsps were not significantly heat shock inducible. The absence of hsp 104 was intriguing and it was speculated that the 110 kDa protein may play a role in stress tolerance in psychrophilic yeasts, similar to that of hsp 104 in mesophilic species.  相似文献   

12.

Background

Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear.

Results

In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells.

Conclusions

Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.  相似文献   

13.
14.
15.
In order to explore the function of heat shock proteins during thermal stress in rice weevil, Sitophilus oryzae, four heat shock protein genes were cloned and characterized. These heat shock protein genes (hsps) were named as Sohsp70–1, Sohsp70–2, Sohsc70, and Sohsp90, respectively. These hsps showed high sequence conservation with the maximum identity with hsps of Tribolium castaneum and other insects. All the four genes showed the highest mRNA expression in pupal stage and the lowest levels in larval stage. The induced expression of the two Sohsp70s (Sohsp70–1 and Sohsp70–2) were reached to the highest levels (15.59-fold and 12.66-fold) after 2?h of incubation at 37?°C, respectively. Expression of Sohsp90 not only was significantly elevated by heat stress but also by cold stress. Whereas, expression level of Sohsc70 was not induced either by heat or cold stress. Furthermore, for rapid heat hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were observed as 2.57, 2.53, 3.33 and 2.33-fold higher than control, respectively; for rapid cold hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were reported as 2.27, 3.02, 3.37 and 2.23-fold higher than control, respectively. Hence, our results revealed that the four Sohsps were associated with temperature adaption under rapid heat or cold hardening.  相似文献   

16.
Heat shock induced by an increase in temperature from 30°C to 47°C led to changes in protein synthesis in wing pads of the fifth larval instar of Locusta migratoria. Synthesis of heat shock proteins in the molecular weight range of 85,000, 70,000 and 18,000–22,000 was first detected at a threshold temperature of 45°C and was found to be highest at 47°C. A marked decline in the synthesis of many other proteins was also evident at 47°C. Recovery of general protein synthesis was observed when wing pads were shifted back to 30°C after a 2-h heat shock at 47°C. Heat shock protein patterns in Locusta and Drosophila were compared.  相似文献   

17.
While it is apparent that the heat shock response is ubiquitous, variabilities in the nature of the heat shock response between closely related species have not been well characterized. The heat shock response of three genotypes of tomato, Lycopersicon esculentum, Lycopersicon pennellii, and the interspecific sexual hybrid was characterized. The two parental genotypes differed in the nature of the heat shock proteins synthesized; the speciesspecific heat shock proteins were identified following in vivo labeling of leaf tissue with [35S]methionine and cysteine. The duration of, and recovery from, heat shock varied between the two species: L. esculentum tissue recovered more rapidly and protein synthesis persisted longer during a heat shock than in the wild species, L. pennellii. Both species induced heat shock protein synthesis at 35°C and synthesis was maximal at 37°C. The response of the F1 to heat shock was intermediate to the parental responses for duration of, and recovery from, heat shock. In other aspects, the response of the F1 to heat shock was not intermediate to the parental responses: the F1 induced only half of the L. esculentum specific heat shock proteins, and all of the L. pennellii specific heat shock proteins. A discussion of the inheritance of the regulation of the heat shock response is presented.  相似文献   

18.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

19.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号