首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
已知组蛋白变异体在基因转录调控、DNA修复以及凋亡等过程中起着重要作用。但组蛋白变异体在细胞衰老中的作用尚不清楚。本研究证明,组蛋白变异体HIST2H2BE可上调p 21的表达,影响细胞的衰老进程。基因芯片、半定量RT-PCR以及Real-time PCR揭示,HIST2H2BE在衰老细胞中表达升高,且其表达具有衰老特异性。在年轻成纤维细胞中过表达HIST2H2BE,可显著减少EdU掺入细胞的百分率,升高细胞衰老标志物SA-β-gal活性以及p 21的表达,提示HIST2H2BE具有细胞衰老调节作用。此外,利用siRNA抑制p 21表达,可明显衰减HIST2H2BE活化SA-β-gal。以上结果显示,组蛋白变异体HIST2H2BE是一个重要的衰老调节蛋白质,其对细胞衰老的调节依赖于p 21。该研究结果为深入探讨染色质结构改变在细胞衰老中的作用提供了新线索。  相似文献   

3.

Purpose

To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process.

Methods

Human dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.

Results

Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.

Conclusions

Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.  相似文献   

4.
5.
Hair cycle dynamics: the case of the human hair follicle   总被引:3,自引:0,他引:3  
The existence of a growth and regeneration cycle makes the hair follicle a true paradigm of tissue homeostasis. Analysis of about 9000 cycles led us to propose a stochastic model of human hair dynamics. The existence of hair cycles implies that stem cells must be cyclically activated and hair melanin unit has to be renewed. Using different markers, we were able to identify two distinct epithelial stem cell reservoirs, located in the upper and lower thirds of the anagen hair follicle outer root sheath. These two reservoirs fuse during the regression phase and individualize again in the new forming anagen hair follicle. Using a set of antibodies specific of melanocyte lineage and melanogenesis, pigmentation unit turnover was followed throughout the entire hair cycle. In the terminal anagen hair, active melanocytes were localized on top of the dermal papilla, while amelanotic melanocytes were identified in the upper third of the outer root sheath (ORS). Those amelanotic melanocytes located in upper ORS probably represented a melanocyte reservoir for successive hair generation, since at the induction of anagen phase, some melanocytes were committed to cell division and melanogenesis was turned on, but only in the nascent hair bulb, close to the dermal papilla.  相似文献   

6.
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.  相似文献   

7.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

8.
To investigate the functions of recombinant human dentin phosphoprotein (rhDPP), we examined cell adhesion, viability and the odontoblastic differentiation activity of human dental pulp cells (hDPCs). Firstly, rhDPP was constructed using pBAD-HisA plasmid in Escherichia coli. Cell adhesion and viability of hDPCs by rhDPP was examined using a crystal violet assay and a MTT assay, ALP, mineralization activity and odontoblastic differentiation-related mRNA levels of hDPCs were measured to elucidate the odontoblastic differentiation effect of rhDPP on hDPCs. Initially, rhDPP significantly and dose-dependently increased hDPCs adhesion versus the untreated control (p?<?0.05). Cell viability was also significantly increased by rhDPP at 5?days (p?<?0.001). Furthermore, the odontoblastic differentiation effect of rhDPP was verified by measuring ALP activity, mineralization activity and the mRNA levels of odontoblastic differentiation markers. Taken together, rhDPP is expected to play an important role on hDPCs, thereby suggesting its potential use for tooth repair and regeneration.  相似文献   

9.
Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo–secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.  相似文献   

10.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

11.
We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin.

Methodology and Principal Findings

Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression.

Conclusions and Significance

These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue.  相似文献   

12.
Contact inhibition of cell movement and proliferation is critical for proper organogenesis and tissue remodeling. We show here a novel regulatory mechanism for this contact inhibition using cultured vascular endothelial cells. When the cells were confluently cultured, Necl-4 was up-regulated and localized at cell–cell contact sites where it cis-interacted with the vascular endothelial growth factor (VEGF) receptor. This interaction inhibited the tyrosine-phosphorylation of the VEGF receptor through protein-tyrosine phosphatase, non-receptor type 13 (PTPN13), eventually reducing cell movement and proliferation. When the cells were sparsely cultured, Necl-4 was down-regulated but accumulated at leading edges where it inhibited the activation of Rho-associated protein kinase through PTPN13, eventually facilitating the VEGF-induced activation of Rac1 and enhancing cell movement. Necl-4 further facilitated the activation of extracellular signal-regulated kinase 1/2, eventually enhancing cell proliferation. Thus, Necl-4 serves as a novel regulator for contact inhibition of cell movement and proliferation cooperatively with the VEGF receptor and PTPN13.  相似文献   

13.
BackgroundOur previous study showed that CXCL11 could play an immunomodulatory role. In this study, we investigated the regulator (miR-205–3p) of CXCL11 and the mechanism of miR-205–3p as a tumor suppressor gene in gastric cancer (GC).Materials and methodsA target relationship between miR-205–3p and CXCL11 was revealed by using the bioinformatics method. This study detected the expressions of miR-205–3p and CXCL11 through qRT-PCR and Western blotting. Moreover, the expressions of Akt, PD-L1, p16, p21, and senescence-associated secretory phenotype (SASP) factor were determined. The effects of miR-205 on proliferation, invasion, and senescence of GC cells were assessed by using methods, such as transfection, Transwell assay, tablet cloning, flow cytometry, and senescence-associated beta-galactosidase (SA-β-gal) staining. Furthermore, the effects were verified using methods, like immunohistochemistry, flow cytometry and SA-β-gal in animal experiments.ResultsBased on the study, it is found that the expression of miR-205–3p is down-regulated, while that of CXCL11 is up-regulated in GC cell lines. By regulating CXCL11, miR-205–3p inhibits Akt activation, reduces the proliferation and invasion of GC cells, promotes cell apoptosis, induces senescence of GC cells, and secretes immunostimulatory SASP factor. The animal experiments confirm that miR-205–3p promotes cell senescence, down-regulates the immunosuppressive signal induced by PD-L1, and promotes secretion of immunostimulatory SASP factor, so that more T cells are recruited in blood and tumors.ConclusionsThis study revealed the molecular mechanism of miR-205–3p in inhibiting proliferation and invasion and inducing senescence of GC cells by regulating CXCL11 and Akt pathways in animal and cell experiments.Key words: microRNA-205–3p, CXCL11, Gastric cancer, Senescence, Proliferation  相似文献   

14.
15.
Megestrol acetate is a common and efficient anticancer progesterone. To explore the activity and the therapeutic mechanisms of megestrol acetate in endometrial cancer, human endometrial cancer cell lines Ishikawa and HHUA overexpressing progesterone receptor A (PR-A) and progesterone receptor B (PR-B) were treated with megestrol acetate. Cell viability, apoptosis, cycle arrest, and senescence, as well as the expressions of p21 and p16, two hallmarks of cellular senescence, were evaluated. Compared with the control, >10 nmol/L megestrol acetate treatment could significantly reduce endometrial cancer cell growth, and induce the irreversible G1 arrest and cell senescence. The expression of cyclin D1 in megestrol acetate treated cells was downregulated, while the expressions of p21 and p16 were upregulated via PR-B isoform. FOXO1 inhibitor AS1842856 could significantly abrogate megestrol acetate-induced cell senescence, suggesting that FOXO1 was involved in megestrol acetate/PR-B axis. These findings may provide a new understanding for the treatment of human endometrial cancer.  相似文献   

16.
J C Pena  A Kelekar  E V Fuchs    C B Thompson 《The EMBO journal》1999,18(13):3596-3603
Transgenic mice that overexpress the anti-apoptotic gene bcl-xL under the control of the keratin 14 promoter have significantly shorter hair than non-transgenic littermates. The deficit in hair length correlated with a decrease in the duration of anagen, the growth phase of the hair cycle. A prolongation in telogen, the resting phase of the hair cycle, was also observed in adult animals. In the developing hair bulb, bcl-xL transgene expression was observed exclusively in the outer root sheath (ORS) cells. Bcl-xL expression enhanced the survival of ORS cells treated with apoptotic stimuli. The results suggest that preventing the apoptotic death of ORS cells during anagen leads to a more rapid termination of progenitor cell commitment/proliferation, while the increased survival of ORS cells during telogen delays the initiation of a new hair cycle. ORS cells produce fibroblast growth factor-5 (FGF-5), which acts in a paracrine fashion to terminate precursor cell division during anagen. The short hair phenotype of bcl-xL transgenic mice was substantially reversed in FGF-5-deficient mice. Thus, the production of growth inhibitory factors by ORS cells may provide a mechanism through which the hair-growth cycle is regulated by cell survival.  相似文献   

17.
The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS104 via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21WAF1 gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.  相似文献   

18.
19.
Up to now, the localization of stem cells in human anagen hair follicle relied on three complementary approaches; namely, detection of slow cycling cells, detection of high colony forming cells, and differential immunohistochemical staining. These techniques, however, gave conflicting results since stem cells were localized either as long label retaining cells in the so-called bulge area or as high colony forming cells in the lower third of the follicle. In the present study we investigated the expression of cytokeratin 19, a marker for putative stem cell-containing epithelial compartments, in order to characterize stem cell distribution in the human hair follicle throughout the hair cycle. We found that anagen human hair follicles contain two distinct reservoirs for stem cells located in the upper and lower thirds of the follicle. These two reservoirs fuse during the catagentelogen transition phase and individualize again in the newly forming anagen hair follicle.  相似文献   

20.
HM Hu  SB Zhang  XH Lei  ZL Deng  WX Guo  ZF Qiu  S Liu  XY Wang  H Zhang  EK Duan 《PloS one》2012,7(7):e40124
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused premature catagen by up-regulation of TGF β2. Immediately after the premature catagen, the expression of anagen chalone BMP4 increased. The up-regulation of BMP4 may further function to prevent anagen transition and maintain telogen. Interestingly, the hair follicle stem cell niche was not destructed during these drastic structural changes caused by estrogen. Additionally, dermal papilla cells, the estrogen target cells in hair follicles, kept their signature gene expressions as well as their hair inductive potential after estrogen treatment. Retention of the characteristics of both hair follicle stem cells and dermal papilla cells determined the reversibility of the hair cycle suppression. These results indicated that estrogen causes reversible hair cycle retardation by inducing premature catagen and maintaining telogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号