首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.  相似文献   

2.
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO. In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis.  相似文献   

3.
Cell growth and differentiation in melanocyte cell populations are regulated by a wide range of bioactive substances. Recently, the tripeptide pyroGlu-Phe-GlyNH2which inhibits melanocyte growthin vitrowas identified in both murine nontransformed melanocytes and malignant melanoma cells. The present study was undertaken to investigate the cell cycle specificity as well as the growth inhibitory profile of the tripeptide after a single or repeated administration to melanocyte cultures. Dose-related effects of the peptide were studied using three different bioassay systems: estimation of cell number, DNA synthesis, and cell flux into mitosis. Growth of melanocyte cultures as well as melanocyte mitotic activity were found to be reduced significantly by the tripeptide at two separate dose levels (10−11and 10−14–10−15M). Growth inhibition of melanocyte population did not last long: less than 36 h after the first and less than 24 h after the second peptide addition to the cultures. The level of DNA synthesis in melanocytes remained unchanged after a single peptide administration. The findings indicate that the tripeptide pyroGlu-Phe-GlyNH2causes transitory delay of cell growth in cultured melanocyte population resulting from a reversible inhibition of melanocyte transition from the G2-phase of the cell cycle into mitosis.  相似文献   

4.
In our attempt to develop effective EGFR-TKIs, two series of 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesized. All the newly synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT. Compounds 15b, 15j, and 18d potently inhibited EGFRWT at sub-micro molar IC50 values comparable to that of erlotinib. Moreover, thirteen compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M. Compounds 17d and 17f exhibited potent inhibitory activities towards EGFRT790M comparable to osimertinib. Compounds that showed promising IC50 values against EGFRWT were further tested for their anti-proliferative activities against three cancer cell lines bearing EGFRWT (MCF-7, HepG2, A549), and two cancer cell lines bearing EGFRT790M (H1975 and HCC827). Compounds 15g, 15j, 15n, 18d and 18e were the most potent anticancer agents against the EGFRWT containing cells, while compounds 15e, 17d and 17f showed promising anti-proliferative activities against EGFRT790M containing cells. Furthermore, the most active compound 18d was selected for further studies regarding to its effects on cell cycle progression and induction of apoptosis in the HepG2 cell line. The results indicated that this compound is good apoptotic agent and arrests G0/G1and G2/M phases of cell cycle. Finally, molecular docking studies were performed to investigate binding pattern of the synthesized compounds with the prospective targets, EGFRWT (PDB: 4HJO) and EGFRT790M (PDB: 3W2O).  相似文献   

5.
Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L‐AP4, a type III mGluR‐selective agonist, enhances Ca2+ uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L‐AP4‐induced Ca2+ influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi/Go proteins, did not affect basal or mGluR6‐induced Ca2+ uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.  相似文献   

6.
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3−ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.  相似文献   

7.
The establishment of a single cell type regeneration paradigm in the zebrafish provides an opportunity to investigate the genetic mechanisms specific to regeneration processes. We previously demonstrated that regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors following larval melanocyte ablation with a small molecule, MoTP. The ease of ablating melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells. Here, we reported the identification of two mutants, earthaj23e1 and juliej24e1 from a melanocyte ablation screen. Both mutants develop normal larval melanocytes, but upon melanocyte ablation, each mutation results in a distinct stage-specific defect in melanocyte regeneration. Positional cloning reveals that the earthaj23e1 mutation is a nonsense mutation in gfpt1 (glutamine:fructose-6-phosphate aminotransferase 1), the rate-limiting enzyme in glucosamine-6-phosphate biosynthesis. Our analyses reveal that a mutation in gfpt1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration and that gfpt1 acts cell autonomously in melanocytes to promote ontogenetic melanocyte darkening. We identified that the juliej24e1 mutation is a splice-site mutation in skiv2l2 (superkiller viralicidic activity 2-like 2), a predicted DEAD-box RNA helicase. Our in situ analysis reveals that the mutation in skiv2l2 causes defects in cell proliferation, suggesting that skiv2l2 plays a role in regulating melanoblast proliferation during early stages of melanocyte regeneration. This finding is consistent with previously described role for cell division during larval melanocyte regeneration. The analyses of these mutants reveal their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process, but also in late stages of differentiation of the regenerating melanocyte. We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis, and those involved in larval or adult growth.  相似文献   

8.
Legumain is required for maintenance of normal kidney homeostasis. However, its role in acute kidney injury (AKI) is still unclear. Here, we induced AKI by bilateral ischemia-reperfusion injury (IRI) of renal arteries or folic acid in lgmnWT and lgmnKO mice. We assessed serum creatinine, blood urea nitrogen, histological indexes of tubular injury, and expression of KIM-1 and NGAL. Inflammatory infiltration was evaluated by immunohistological staining of CD3 and F4/80, and expression of TNF-α, CCL-2, IL-33, and IL-1α. Ferroptosis was evaluated by Acsl4, Cox-2, reactive oxygen species (ROS) indexes H2DCFDA and DHE, MDA and glutathione peroxidase 4 (GPX4). We induced ferroptosis by hypoxia or erastin in primary mouse renal tubular epithelial cells (mRTECs). Cellular survival, Acsl4, Cox-2, LDH release, ROS, and MDA levels were measured. We analyzed the degradation of GPX4 through inhibition of proteasomes or autophagy. Lysosomal GPX4 was assessed to determine GPX4 degradation pathway. Immunoprecipitation (IP) was used to determine the interactions between legumain, GPX4, HSC70, and HSP90. For tentative treatment, RR-11a was administrated intraperitoneally to a mouse model of IRI-induced AKI. Our results showed that legumain deficiency attenuated acute tubular injury, inflammation, and ferroptosis in either IRI or folic acid-induced AKI model. Ferroptosis induced by hypoxia or erastin was dampened in lgmnKO mRTECs compared with lgmnWT control. Deficiency of legumain prevented chaperone-mediated autophagy of GPX4. Results of IP suggested interactions between legumain, HSC70, HSP90, and GPX4. Administration of RR-11a ameliorated ferroptosis and renal injury in the AKI model. Together, our data indicate that legumain promotes chaperone-mediated autophagy of GPX4 therefore facilitates tubular ferroptosis in AKI.Subject terms: Necroptosis, Glomerulus, Acute kidney injury  相似文献   

9.
The extent of adult stem cell involvement in embryonic growth is often unclear, as reliable markers or assays for whether a cell is derived from an adult stem cell, such as the melanocyte stem cell (MSC), are typically not available. We have previously shown that two lineages of melanocytes can contribute to the larval zebrafish pigment pattern. The embryo first develops an ontogenetic pattern that is largely composed of ErbB-independent, direct-developing melanocytes. This population can be replaced during regeneration by an ErbB-dependent MSC-derived population following melanocyte ablation. In this study, we developed a melanocyte differentiation assay used together with drugs that ablate the MSC to investigate whether MSC-derived melanocytes contribute to the ontogenetic pattern. We found that essentially all melanocytes that develop before 3 dpf arise from the ErbB-independent, direct-developing population. Similarly, late-developing (after 3 dpf) melanocytes of the head are also ErbB independent. In contrast, the melanocytes that develop after 3 days postfertilization in the lateral and dorsal stripe are sensitive to ErbB inhibitor, indicating that they are derived from the MSC. We show that melanocyte regeneration mutants kitj1e99 and skiv2l2j24e1 that are grossly normal for the overall ontogenetic pattern also lack the MSC-derived contribution to the lateral stripe. This result suggests that the underlying regeneration defect of these mutations is a defect in MSC regulation. We suggest that the regulative functions of the MSC may serve quality control roles during larval development, in addition to its established roles in larval regeneration and growth and homeostasis in the adult.  相似文献   

10.
Karim A. Walters  John H. Golbeck 《BBA》2018,1859(10):1096-1107
Recently developed molecular wire technology takes advantage of [4Fe-4S] clusters that are ligated by at least one surface exposed Cys residue. Mutagenesis of this Cys residue to a Gly opens an exchangeable coordination site to a corner iron atom that can be chemically rescued by an external thiolate ligand. This ligand can be subsequently displaced by mass action using a dithiol molecular wire to tether two redox active proteins. We intend to apply this technique to tethering Photosystem I to ferredoxin sulfite reductase (FdSiR), an enzyme that catalyzes the six-electron reduction of sulfite to hydrogen sulfite and nitrite to ammonia. The enzyme contains a [4Fe-4S]2+/1+ cluster and a siroheme active site. FdSiRWT and an FdSiRC491G variant were cloned from Synechococcus elongatus PCC 7942 and expressed along with the cysG gene from Salmonella typhimurium using the pCDFDuet plasmid. UV/Vis absorbance spectra of both FdSiRWT and the FdSiRC491G variant displayed characteristic peaks at 278, 392 (Soret), 585 (α) and 714?nm (charge transfer band), and 278, 394 (Soret), 587 (α) and 714?nm (charge transfer band) respectively. Both enzymes in their as-isolated forms displayed an EPR spectrum characteristic of an S?=?5/2 high spin heme. When reduced, both enzymes exhibited the signal of a low spin S?=?1/2 [4Fe-4S]1+ cluster. The FdSiRWT and FdSiRC491G variant both showed activity using reduced methyl viologen and Synechococcus elongatus PCC 7942 ferredoxin 1 (Fd1) as electron donors. Based on these results, the FdSIRC491G variant should be a suitable candidate for wiring to Photosystem I.  相似文献   

11.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

12.
13.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

14.
Opn5 is one of the recently identified opsin groups that is responsible for nonvisual photoreception in animals. We previously showed that a chicken homolog of mammalian Opn5 (Opn5m) is a Gi-coupled UV sensor having molecular properties typical of bistable pigments. Here we demonstrated that mammalian Opn5m evolved to be a more specialized photosensor by losing one of the characteristics of bistable pigments, direct binding of all-trans-retinal. We first confirmed that Opn5m proteins in zebrafish, Xenopus tropicalis, mouse, and human are also UV-sensitive pigments. Then we found that only mammalian Opn5m proteins lack the ability to directly bind all-trans-retinal. Mutational analysis showed that these characteristics were acquired by a single amino acid replacement at position 168. By comparing the expression patterns of Opn5m between mammals and chicken, we found that, like chicken Opn5m, mammalian Opn5m was localized in the ganglion cell layer and inner nuclear layer of the retina. However, the mouse and primate (common marmoset) opsins were distributed not in the posterior hypothalamus (including the region along the third ventricle) where chicken Opn5m is localized, but in the preoptic hypothalamus. Interestingly, RPE65, an essential enzyme for forming 11-cis-retinal in the visual cycle is expressed near the preoptic hypothalamus of the mouse and common marmoset brain but not near the region of the chicken brain where chicken Opn5m is expressed. Therefore, mammalian Opn5m may work exclusively as a short wavelength sensor in the brain as well as in the retina with the assistance of an 11-cis-retinal-supplying system.  相似文献   

15.
Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnIR146G or cTnIR21C influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca2+ binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnIWT. cTnIWT, cTnIR146G, and cTnIR21C were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnIR146G- and cTnIR21C-exchanged myofibrils, and Ca2+ sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnIWT-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnIWT myofibrils, especially at Ca2+ levels that the heart operates in vivo. Importantly, this effect was blunted for cTnIR146G- and cTnIR21C-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnIR146G and cTnIR21C blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide.  相似文献   

16.
17.
This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [35S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G2 phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G2 phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G2 phase. In the G1 and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)+ RNA isolated at each phase. Three poly(A)+ RNAs increased in amount from the G1 to the S phase and one poly (A)+ RNA increased preferentially from the G2 phase to cytokinesis.  相似文献   

18.
Cell cycle-arrested cancer cells are resistant to conventional chemotherapy that acts on the mitotic phases of the cell cycle, although the molecular mechanisms involved in halting cell cycle progression remain unclear. Here, we demonstrated that RFPL4A, an uncharacterized ubiquitin ligase, induced G1 retention and thus conferred decreased sensitivity to chemotherapy in the human colorectal cancer cell line, HCT116. Long term time lapse observations in HCT116 cells bearing a “fluorescence ubiquitin-based cell cycle indicator” identified a characteristic population that is viable but remains in the G1 phase for an extended period of time (up to 56 h). Microarray analyses showed that expression of RFPL4A was significantly up-regulated in these G1-arrested cells, not only in HCT116 cells but also in other cancer cell lines, and overexpression of RFPL4A increased the G1 population and decreased sensitivity to chemotherapy. However, knockdown of RFPL4A expression caused the cells to resume mitosis and induced their susceptibility to anti-cancer drugs in vitro and in vivo. These results indicate that RFPL4A is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy and thus may be a promising therapeutic target for refractory tumor conditions.  相似文献   

19.
20.
The developmental origins of health and disease refer to the theory that adverse maternal environments influence fetal development and the risk of cardiovascular disease in adulthood. We used the chronically hypertensive atrial natriuretic peptide knockout (ANP?/?) mouse as a model of gestational hypertension, and attempted to determine the effect of gestational hypertension on left ventricular (LV) structure and function in adult offspring. We crossed normotensive ANP+/+ females with ANP?/? males (yielding ANP+/?WT offspring) and hypertensive ANP?/? females with ANP+/+ males (yielding ANP+/?KO offspring). Cardiac gene expression was measured using real-time quantitative PCR. Cardiac function was assessed using echocardiography. Daily injections of isoproterenol (ISO) were used to induce cardiac stress. Collagen deposition was assessed using picrosirius red staining. All mice were 10 weeks of age. Gestational hypertension resulted in significant LV hypertrophy in offspring, with no change in LV function. Treatment with ISO resulted in significant LV diastolic dysfunction with a restrictive filling pattern (increased E/A ratio and E/e′) and interstitial myocardial fibrosis only in ANP+/?KO and not ANP+/?WT offspring. Gestational hypertension programs adverse LV structural and functional remodeling in offspring. These data suggest that adverse maternal environments may increase the risk of heart failure in offspring later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号