首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oral pathogens have created a menace in recent years due to biofilm formation and antimicrobial drug resistance. The current treatment strategy works well with antibiotics. However, constant use of antibiotics creates a selective pressure, which increases adaptability of the pathogens. Therefore, it is of interest to analyze the potential targets of genistein in dental pathogens using computer aided prediction tools.  相似文献   

2.
Tao R  Tong Z  Lin Y  Xue Y  Wang W  Kuang R  Wang P  Tian Y  Ni L 《Peptides》2011,32(8):1748-1754
Dental caries is a common oral bacterial infectious disease of global concern. Prevention and treatment of caries requires control of the dental plaque formed by pathogens such as Streptococcus mutans and Streptococcus sobrinus. Pleurocidin, produced by Pleuronectes americanus, is an antimicrobial peptide that exerts broad-spectrum activity against pathogenic bacteria and fungi. Moreover, pleurocidin shows less hemolysis and is less toxic than other natural peptides. In the present study, we investigated whether pleurocidin is an effective antibiotic peptide against common cariogenic microorganisms and performed a preliminary study of the antimicrobial mechanism. We assayed minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics and performed a spot-on-lawn assay. The BioFlux system was used to generate bacterial biofilms under controllable flow. Fluorescence microscopy and confocal laser scanning microscopy (CLSM) were used to analyze and observe biofilms. Scanning electron microscopy was used to observe the bacterial membrane. MIC and MBC results showed that pleurocidin had different antimicrobial activities against the tested oral strains. Although components of saliva could affect antimicrobial activity, pleurocidin dissolved in saliva still showed antimicrobial effects against oral microorganisms. Furthermore, pleurocidin showed a favorable killing effect against BioFlux flow biofilms in vitro. Our findings suggest that pleurocidin has the potential to kill dental biofilms and prevent dental caries.  相似文献   

3.
Antimicrobial Activities of Tocklai Vegetative Tea Clones   总被引:1,自引:0,他引:1  
Thirty-one Tocklai vegetative (TV) tea clones contained caffeine and total catechin 44.39 and 227.55 mg/g dry weight of leaves, respectively. The (−)-epigallocatechin gallate (EGCG) was the most abundant (109.60 mg/g) followed by -(−)-epigallocatechin (EGC, 44.54 mg/g), (−)-epicatechin gallate (ECG, 41.74 mg/g), (−)-epicatechin (EC, 27.42 mg/g) and +catechin (4.25 mg/g). Total catechins were highest in TV 20 (509.7 mg/g) and lowest in TV 6 (71.7 mg/g). The tea clones that contain high level of total catechin exhibited the strongest antimicrobial activity. Among caffeine and flavanol compounds, theaflavins (TF) present in black tea possess a similar antimicrobial potency as EC present in fresh leaves, and that the conversion of catechins to TF during fermentation in making black tea tends to alter their antimicrobial activities. The bioactive molecules other than catechins present in tea leaves may also contribute towards antimicrobial activity.  相似文献   

4.
AIMS: This study aimed to evaluate the efficacy of 'natural' putative antimicrobial agents against Streptococcus mutans and to compare these with synthetic agents using the flow microcalorimeter. Streptococcus mutans is one of the oral pathogens responsible for dental caries. METHODS AND RESULTS: Traditional microbiological techniques are invasive and destructive unlike flow microcalorimetry. This rapid technique was used to continuously monitor the power output (bioactivity) of Strep. mutans with reproducibility, precision and accuracy. The antibacterial agents found in oral hygiene products and all the natural agents tested showed anti-Strep. mutans ability. CONCLUSION: In this study microcalorimetry identified agents that had a biological effect and quantified the rate of kill achieved enabling four broad categories of antimicrobial agent to be defined. SIGNIFICANCE AND IMPACT OF THE STUDY: Microcalorimetric data are a better indication of antimicrobial efficacy than merely determining concentrations at which an antimicrobial agent is bacteriostatic or bactericidal.  相似文献   

5.
Wang W  Tao R  Tong Z  Ding Y  Kuang R  Zhai S  Liu J  Ni L 《Peptides》2012,33(2):212-219
Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.  相似文献   

6.
T. D. MORGAN, A. E. BEEZER, J. C. MITCHELL AND A. W. BUNCH. 2001 .
Aims: This study aimed to evaluate the efficacy of 'natural' putative antimicrobial agents against Streptococcus mutans and to compare these with synthetic agents using the flow microcalorimeter. Streptococcus mutans is one of the oral pathogens responsible for dental caries.
Methods and Results: Traditional microbiological techniques are invasive and destructive unlike flow microcalorimetry. This rapid technique was used to continuously monitor the power output (bioactivity) of Strep. mutans with reproducibility, precision and accuracy. The antibacterial agents found in oral hygiene products and all the natural agents tested showed anti- Strep. mutans ability.
Conclusions: In this study microcalorimetry identified agents that had a biological effect and quantified the rate of kill achieved enabling four broad categories of antimicrobial agent to be defined.
Significance and Impact of the Study: Microcalorimetric data are a better indication of antimicrobial efficacy than merely determining concentrations at which an antimicrobial agent is bacteriostatic or bactericidal.  相似文献   

7.
Brouwer CP  Rahman M  Welling MM 《Peptides》2011,32(9):1953-1963
There is an urgent need to develop new antimicrobial drugs especially for combating the rise of infections caused by multi-resistant pathogens such as MRSA and VRSA. The problem of antibiotic resistant micro-organisms is expected to increase disproportionally and controlling of infections is becoming difficult because of the rapid spread of those micro-organisms. Primary therapy with classical antibiotics is becoming more ineffective. Combinational therapy of antibiotics with antimicrobial peptides (AMP's) has been suggested as an alternative approach to improve treatment outcome. Their unique mechanism of action and safety profile makes AMP's appealing candidates for simultaneous or sequential use in different cases of infections. In this review, for antimicrobial treatment the application of synthetic antimicrobial peptide hLF(1-11), derived from the first 11 amino acids of human lactoferrin is evaluated in both pre-clinical and clinical settings. Present information indicates that this derivate from lactoferrin is well tolerated in pre-clinical tests and clinical trials and thus hLF(1-11) is an interesting candidate for further exploration in various clinical indications of obscure infections, including meningitis. Another approach of using AMP's is their use in prevention of infections e.g. as coating for dental or bone implants or in biosensing applications or useful as infection specific radiopharmaceutical.  相似文献   

8.
The primary polyphenol in green tea extract is the catechin epigallocatechin gallate (EGCG). Various studies have shown significant suppressive effects of catechin on mammalian cells, either tumor or normal cells, including lymphoid cells. Previous studies from this laboratory reported that EGCG has marked suppressive activity on murine macrophages infected with the intracellular bacterium Legionella pneumophila (Lp), an effect mediated by enhanced production of both tumor necrosis factor-alpha (TNF-alpha) and gamma-interferon (IFN-gamma). In the present study, primary murine bone marrow (BM)-derived dendritic cells (DCs), a phagocytic monocytic cell essential for innate immunity to intracellular microorganisms, such as Lp, were stimulated in vitro with the microbial stimulant lipopolysaccharide (LPS) from gram-negative bacteria, the cell wall component from gram-positive bacteria muramyldipeptide (MDP) or infected with Lp. Production of the T helper cell (Th1)-activating cytokine, interleukin-12 (IL-12) and the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha),produced mainly by phagocytic cells and important for antimicrobial immunity, was determined in cell culture supernatants by enzyme-linked immunosorbent assay (ELISA). Treatment of the cells with EGCG inhibited, in a dose-dependent manner, production of IL-12. In contrast, enhanced production of TNF-alpha occurred in a dose-dependent manner in the DC cultures stimulated with either soluble bacterial product or infected with Lp. Thus, the results of this study show that the EGCG catechin has a marked effect in modulating production of these immunoregulatory cytokines in stimulated DCs, which are important for antimicrobial immunity, especially innate immunity. Further studies are necessary to characterize the physiologic function of the effect of EGCG on TNF-alpha and IL-12 during Lp infection, and the mechanisms involved.  相似文献   

9.
The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30°C for 216 h with shaking at 120 rpm. Three new derivatives, 7β-hydroxy-3-oxo-olean-12-en-28-oic acid, 7β,21β-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3β,7β,21β-trihydroxyolean-12-en-28-oic acid, and one know compound, 21β-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21β-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21β-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.  相似文献   

10.
Lactobacillus reuteri DPC16 is a human-isolated strain recently patented in New Zealand. The antimicrobial activity of cell-free supernatants from different fermentation processes, with or without glycerol supplementation was studied. When grown in just MRS broth, the cultural supernatant significantly inhibited the growth of selected food-borne pathogens, possibly due to acidic effect as this activity was pH-dependent. The cell-free supernatants from secondary fermentation of DPC16 resting cells in glycerol-supplemented media have shown very different antimicrobial activities. A very potent antimicrobial activity gradually developed during the fermentation process which was observed only when growing in MRS-glycerol broth (such supernatant is denoted MRSg). This strong antimicrobial activity was pH-independent, dose-dependant and affected both Gram-negative and Gram-positive pathogens. Reuterin detected in MRSg is believed to be responsible for these activities. The susceptibility of the selected pathogens (grown to stationary phase) to MRSg was tested and found that exposure to MRSg for 180 min led to a significant reduction in cell viability in all pathogens. These results suggest that this is a reuterin-producing strain, which has potent antimicrobial activity against both Gram-negative and Gram-positive pathogens. These findings have indicated a clear potential of this novel strain in industrial applications.  相似文献   

11.
昆虫天然免疫反应分子机制研究进展   总被引:4,自引:0,他引:4  
张明明  初源  赵章武  安春菊 《昆虫学报》2012,55(10):1221-1229
昆虫体内缺乏高等脊椎动物所具有的获得性免疫系统, 只能依赖发达的天然免疫系统抵抗细菌、 真菌、 病毒等外源病原物的侵染。本文概括了昆虫天然免疫反应发生和作用的分子机制相关进展, 重点阐述了重要免疫相关因子在昆虫天然免疫反应中的功能和作用机制。昆虫天然免疫反应分为体液免疫和细胞免疫两种, 二者共同作用完成对病原物的吞噬 (phagocytosis)、 集结 (nodulation)、 包囊 (encapsulation)、 凝结 (coagulation)和黑化(melanization)等。当昆虫受到外界病原物的侵染时, 首先通过体内的模式识别蛋白(pattern recognition proteins/receptor, PRPs)识别并结合病原物表面特有的模式分子(pathogen-associated molecular pattern, PAMPs), 继而一系列包括丝氨酸蛋白酶和丝氨酸蛋白酶抑制剂在内的级联激活反应被激活和调控, 产生抗菌肽、 黑色素等免疫效应分子, 清除或杀灭外源物。抗菌肽是一类小分子量的阳离子肽, 具有广谱抗菌活性, 针对不同类型的病原物, 抗菌肽的产生机制也不尽相同。昆虫体内存在着两种信号转导途径调节抗菌肽的产生: 一是由真菌和大部分革兰氏阳性菌激活的Toll途径; 二是由革兰氏阴性菌激活的Imd途径(immune deficiency pathway)。这两个途径通过激活不同转录因子调控不同抗菌肽基因的表达参与昆虫体内的天然免疫反应。  相似文献   

12.
Dental caries and periodontitis are common bacterial mouth infections. As a potentially attractive substitute for conventional antibiotics, antimicrobial peptides have been widely tested and used for controlling bacterial infections. In this study, we tested the efficacy of the peptides from the skin secretions of Rana chensinensis for killing several major cariogenic and periodontic pathogens as well as Candida albicans. L-K6, a temporin-1CEb analog, exhibited high antimicrobial activity against the tested oral pathogens and was able to inhibit Streptococcus mutans biofilm formation and reduce 1-day-old S. mutans biofilms with a minimum biofilm inhibitory concentration and reducing concentration of 3.13 and 6.25 μM, respectively. The results of confocal laser scanning microscopy demonstrated that the peptide significantly reduced cell viability within oral biofilms. Furthermore, as little as 5 μM L-K6 significantly inhibited lipopolysaccharide (LPS)- and interleukin-1β-induced productions of interleukin-8 and tumor necrosis factor-α from THP-1 monocytic cells. This anti-inflammatory activity is associated with the binding of L-K6 to LPS and neutralizing LPS-induced proinflammatory responses in THP-1 cells, as well as dissociating LPS aggregates. Our results suggest that L-K6 may have potential clinical applications in treating dental caries by killing S. mutans within dental plaque and acting as anti-inflammatory agents in infected tissues.  相似文献   

13.
Brook I 《Anaerobe》2006,12(1):5-12
The normal oropharyngeal flora contained aerobic and anaerobic bacteria that can cause respiratory infections including sinusitis. Some of these bacteria can interfere with the growth of potential pathogens and may play a role in preventing infections. Anaerobic bacteria emerge as pathogens as the infection becomes chronic. This may be the result of the selective pressure of antimicrobial agents that enable resistant anaerobic organisms to survive, and from the development over time of conditions appropriate for anaerobic growth, which include the reduction in oxygen tension and an increase in acidity within the sinus cavity. Anaerobes were isolated in acute maxillary sinusitis of odontogenic origin and in over half of the patients with chronic sinusitis whenever proper techniques for their cultivation were employed. These organisms were also recovered in acute sinusitis that was associated with dental infections. The predominant isolates were pigmented Prevotella and Porphyromonas, Fusobacterium and Peptostreptococcus spp.  相似文献   

14.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

15.
doi: 10.1111/j.1741‐2358.2011.00462.x
Antimicrobial activity of disinfectant agents incorporated into type IV dental stone Purpose: This study evaluated the antimicrobial activity of two disinfectant agents, 2% chlorhexidine digluconate solution (CHX) and 98% chlorhexidine hydrochloride powder (HYD), incorporated into type IV dental stone at the time of mixing. Material and methods: Agar diffusion test was used for the following microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The specimens were grouped in: (1) dental stone mixed with sterile distilled water; (2) paper disc soaked with CHX; (3) dental stone mixed with CHX; and (4) dental stone with incorporation of HYD, in 1% proportion of the dental stone mass and mixed with sterile distilled water. The culture medium was inoculated with microbial suspensions 1 and 24 h after pouring of the dental stone. The antimicrobial activity was evaluated by the average diameter of microbial growth inhibition zones. The data were analysed with a nested anova (p < 0.05) and Tukey test for specific comparisons. Results: The disinfectant agents demonstrated antimicrobial activity against all microorganisms, with the exception of C. albicans, against which the CHX was ineffective in two periods of analysis. Significant differences between disinfectants were found with all microorganisms. Conclusion: The disinfectant agents analysed were effective against most of the microorganisms tested, except C. albicans.  相似文献   

16.
Bass hepcidin was purified from the gill of hybrid striped bass (Morone chrysops x Morone saxatilis) based on antimicrobial activity against Escherichia coli. This 21-amino acid peptide has 8 cysteines engaged in 4 disulfide bonds and is very similar to human hepcidin, an antimicrobial peptide with iron regulatory properties. To gain insight into potential role(s) of bass hepcidin in innate immunity in fish, we synthesized the peptide, characterized its antimicrobial activities in vitro, determined its solution structure by NMR, and quantified hepatic gene expression in vivo following infection of bass with the fish pathogens, Streptococcus iniae or Aeromonas salmonicida. Its structure is very similar to that of human hepcidin, including the presence of an antiparallel beta-sheet, a conserved disulfide-bonding pattern, and a rare vicinal disulfide bond. Synthetic bass hepcidin was active in vitro against Gram-negative pathogens and fungi but showed no activity against key Gram-positive pathogens and a single yeast strain tested. Hepcidin was non-hemolytic at microbicidal concentrations and had lower specific activity than moronecidin, a broad spectrum, amphipathic, alpha-helical, antimicrobial peptide constitutively expressed in bass gill tissue. Good synergism between the bacterial killing activities of hepcidin and moronecidin was observed in vitro. Hepcidin gene expression in bass liver increased significantly within hours of infection with Gram-positive (S. iniae) or Gram-negative (A. salmonicida) pathogens and was 4-5 orders of magnitude above base-line 24-48 h post-infection. Our results suggest that hepcidin plays a key role in the antimicrobial defenses of bass and that its functions are potentially conserved between fish and human.  相似文献   

17.
The spectrum of infectious diseases has shifted in the past 50 years to include those caused by microbes that cause disease predominantly in immunocompromised individuals. This phenomenon has underscored the dependence of microbial virulence on the immune status of the host. The limited efficacy of the available antimicrobial armamentarium in immunocompromised individuals, combined with increasing resistance to these agents, has led to an urgent need for new therapies for infectious diseases. Immunomodulation represents a novel approach to antimicrobial therapy that depends on bolstering host immunity, rather than direct antimicrobial activity. Immunomodulators can be divided into those that are specific to pathogens (pathogen-specific) and those that are not specific to pathogens (non-specific). However, to date only a few immunomodulators have been evaluated for their efficacy as antimicrobial tools.  相似文献   

18.
The mucus layer on the surface of fish consists of several antimicrobial agents that provide a first line of defense against invading pathogens. To date, little is known about the antimicrobial properties of the mucus of Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp (Cyprinus carpio sub sp. koi), striped bass (Morone saxatilis), haddock (Melanogrammus aeglefinus) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were extracted with acidic, organic and aqueous solvents to identify potential antimicrobial agents including basic peptides, secondary metabolites, aqueous and acid soluble compounds. Initial screening of the mucus extracts against a susceptible strain of Salmonella enterica C610, showed a significant variation in antimicrobial activity among the fish species examined. The acidic mucus extracts of brook trout, haddock and hagfish exhibited bactericidal activity. The organic mucus extracts of brook trout, striped bass and koi carp showed bacteriostatic activity. There was no detectable activity in the aqueous mucus extracts. Further investigations of the activity of the acidic mucus extracts of brook trout, haddock and hagfish showed that these fish species had specific activity for fish and human pathogens, demonstrating the role of fish mucus in antimicrobial protection. In comparison to brook trout and haddock, the minimum bactericidal concentrations of hagfish acidic mucus extracts were found to be approximately 1.5 to 3.0 times lower against fish pathogens and approximately 1.6 to 6.6 folds lower for human pathogens. This preliminary information suggests that the mucus from these fish species may be a source of novel antimicrobial agents for fish and human health related applications.  相似文献   

19.
为研究剑叶龙血树内生真菌资源多样性,初步探讨和筛选具有抑菌活性的特异性菌株以及进一步开发剑叶龙血树内生真菌的抗菌活性化合物。该文采用植物组织分离法从剑叶龙血树茎和叶中分离内生真菌,对内生真菌进行液体发酵7 d,经乙酸乙酯萃取后制得粗提物,并采用牛津杯扩散法,以10种常见病原菌和5种临床耐药菌为靶标检测其发酵粗提物的抑菌活性,对有较好抑菌活性的内生真菌进行分子鉴定。结果表明:(1)从剑叶龙血树茎、叶中共分离得到345株内生真菌,294株对一种以上指示菌有抑制活性;(2)其中84株内生真菌对5株临床耐药菌均有不同程度的抑制活性,占所分离菌株总数的24.35%,75%的内生真菌对金黄色葡萄球菌有抑制活性。这说明剑叶龙血树中存在多种有抑菌活性的内生真菌,为剑叶龙血树内生菌抗菌活性成分挖掘及新型抗菌药物筛选奠定了基础。  相似文献   

20.
Badet C  Quero F 《Anaerobe》2011,17(1):19-22
Honey has been used since ancient times and more recently, for the healing of wounds and against infectious diseases. The aim of our study was to investigate the effect of two manuka honeys showing different potencies of their antibacterial activity, on potentially pathogenic oral bacteria. The antimicrobial activity was examined by determining the MIC and MBC using the macro dilution broth technique. The effect on the adherence was tested on growing cells of Streptococcus mutans on a glass surface and on a multi-species biofilm grown on saliva-coated hydroxyapatite discs. As expected, the antibacterial activity of manuka 1 (with higher potency of antibacterial activity) was the most important. The two tested honeys weakly inhibited the adherence of S.mutans cells to a glass surface at sub-MIC concentration. Manuka 1 showed a total inhibition of multi-species biofilm at the concentration of 200 μg/ml manuka 2 inhibited biofilm formation weakly at the concentration of 200 μg/ml but firmly at the concentration of 500 μg/ml. Our findings suggest that manuka honeys might be able to reduce oral pathogens within dental plaque. These two honeys appear to be able to control dental biofilm deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号