首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small-scale, biogenic processes are thought to be important in creating a mosaic of microhabitats that allow co-existence of the large numbers of rare species found in deep-sea sediments. However, the large-scale effects of hydrodynamic disturbance seem likely to be important in high-energy settings on the deep-sea bed. This is investigated by examining spatial dispersion patterns in the macrobenthic populations at two deep-sea sites off Portugal. The widely differing conditions of sediment disturbance at the two sites are related to differences in macrobenthic species diversity and dominance. Closely grouped, transponder-mapped, replicate box core samples, each divided into 25 “vegematic” subcores permitted analysis of dispersion patterns at two spatial scales at each site. One site was located on the Tagus Abyssal Plain (TAP), and the other in the nearby Setubal Canyon (SC) where ripple bedforms indicate vigorous bed flow, probably with a tidal periodicity. Greater aggregation at the scale of tens of metres is indicated from the observed numbers of SC species per box core being wide underestimates of the value predicted by rarefaction of the pooled total compared to those from TAP. Variance/mean ratios for individual species of bivalves and tanaids indicated more aggregation in spatial distribution between box cores from SC than from TAP. Dispersion chi-square analysis also indicated more non-randomness at SC between box cores than for the TAP cores. However, low faunal abundances in the TAP samples render the results of analyses for this site somewhat inconclusive and therefore the trend indicating less aggregation at TAP compared to SC must be regarded as weak for the groups examined. Analyses of the distribution of tanaids, and bivalves at a 100 × 100 mm subcore scale showed no convincing significant departure from random expectation, but low abundances in these groups reduces the sensitivity of the tests applied. Between-core aggregation detected at SC may reflect habitat variation resulting from the varying depth within the area of sampling, while within-core patchiness could be influenced by the ripple bed forms on the sediment.  相似文献   

2.
In-situ studies on sublittoral soft bottom macrofauna (depth: 14–16 m) employing the underwater laboratory (UWL) “Helgoland” were carried out. Sets of samples were compared for small-scale local and short-term changes in species richness, faunal abundance, numerical dominance, diversity, evenness, homogeneity, and similarity. It could be shown that minor differences in sediment quality can cause conspicuous heterogeneity within a small sampling area (diameter: ca. 100 m). Both spatfall and mortality of benthic invertebrates can change the faunal structure within a short period (two months). The degree of change varies between species and thus at stations harbouring different faunal assemblages as well.  相似文献   

3.
Depth-related patterns of macrobenthic community structure and composition have been studied from box-core samples from the Scottish continental slope where deep-sea trawling and oil exploration are becoming increasingly important. There is a strong pattern of declining biomass and faunal abundance with increasing depth, but results also indicate reduced biomass and numbers of macrobenthos in the shallowest samples from just below the shelf edge where there are coarse sediments and a regime of strong bottom currents. There is also reduced species diversity at the shallowest stations, probably caused by hydrodynamic disturbance, but no clear mid-slope peak in species diversity as described from the northwest Atlantic. Taxonomic composition of the macrobenthic community shows most change between about 1000 and 1200 m, expressed as a major dichotomy in multivariate analysis by cluster analysis and ordination. It also shows up as a step-like increase in the rate of accumulation of new macrofaunal species. This corresponds to a change in hydrodynamic regime, from a seabed rich in suspension- and interface-feeding epifauna, to one where biogenic traces from large, burrowing deposit feeders are well developed, and visible epifauna rare in seabed photographs. It also corresponds to the depth zone where earlier study of megafaunal echinoderms in trawl and epibenthic sled samples also shows a clear peak in across-slope rate of change in faunal composition.  相似文献   

4.
Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009–2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf ( 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness ( diversity) and diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal diversity across the depth gradient.  相似文献   

5.
Studies from temperate and tropical regions have shown that variability in the distribution of benthos exists at different spatial scales. There are very few similar studies from polar systems, the shallows of which represent some of the most intensely disturbed habitats on the planet. Variability in the abundances of the five most common macrofauna was examined at three spatial scales, metres, tens of metres and hundreds of metres, in the shallows (5-25 m depth) of Adelaide Island, West Antarctic Peninsula. Whilst significant community change occurs along a depth gradient at the study sites, not all of the common species studied showed clear depth-related patterns of distribution. Furthermore, although abundance patterns varied between the organisms, consistent depth-related trends in the spatial scale contributing most to the variability were observed for four of the five species. For four species the relative importance of large-scale variability (between sites) decreased from 5 to 25 m depth, whilst small-scale variability (between replicates) increased along the depth gradient. Variation between sites is probably largely driven by ice disturbance, which becomes less frequent with depth. Conversely, small-scale patchiness is promoted by biological interactions, which become relatively more influential as community complexity and species richness increase along the depth gradient.  相似文献   

6.
Species-rich moth faunas at two sites in a montane tussock grassland at Cass show major declines in the abundance of many common species between 1961-63 and 1987-89, furthering a 50- to 70-year trend. The recent faunal record (202 species) is quantified by a 3-point light-trapping methodology based on independence of serial samples, minimised sample variability and a posteriori data standardisation. An historical record of vegetation change is also presented, pointing to a major decline in endemic herb species with the advances of an adventive grass, Agrostis capillaris. Site differences feature in the analysis of vegetation and faunal changes. At the site with the greater loss of herbs and the 93% grass cover (a doubling in 26 years), the respective abundances of common herb- and grass-feeding moth species have declined 88% and 74% since 1961-63. A greater residual floral diversity at the other site (13% herb cover, 71% grasses) has to date favoured a lesser decline in grass-feeders (56%). Data analyses suggest that few common endemic grassland moths can survive as oligophages, most depending on feeding diversity. In the face of reducing diversity, the thrust of faunal conservation in induced Agrostis associations should be to manage the vegetation using adventive animals as allies. The evidence of the study supports and extends the author's earlier conservation guidelines.  相似文献   

7.
Dan A. Smale 《Polar Biology》2008,31(10):1225-1231
Benthic communities in nearshore habitats around Antarctica are strongly influenced by ice disturbance. It has been suggested that where ice scour disturbance is severe, the relative importance of certain ecological groups is elevated. I examined the relative contributions of mobility, size, feeding strategy and development mode groups to total faunal abundance and species richness in relation to ice disturbance at Adelaide Island, West Antarctic Peninsula. The contributions of ecological groups were assessed along a depth/disturbance gradient from 5 to 25 m depth at two sites. At one site, the relative abundance of the low mobility group was significantly greater at low disturbance levels, whilst the relative abundance of the high dispersal group (taxa with pelagic larvae) was elevated at high disturbance levels. At the other site, the relative abundance of secondary consumers was greater at high disturbance levels. Even over small spatial scales, certain ecological traits seem advantageous to a fauna shaped by intense, catastrophic ice scour.  相似文献   

8.
Sustainable crop production is dependent on improvement of soil health using different management strategies. A study was conducted in the 2008/09 cropping season to investigate soil macrofauna order diversity and abundance under organic matter transfer system and improved fallows in a high rainfall (>800 mm year?1) area of Zimbabwe. Macrofauna were sampled using monoliths to a depth of 25 cm and Shannon‐Wiener diversity was used for diversity testing. Order diversity varied significantly with treatment under both systems. Under improved fallows, Leucaena trichandra had the highest fauna orders (6) followed by Calliandra colorthysus (5), then Acacia anguistissima (4) while Leucaena pallida and miombo forest had the least orders. Crotalaria juncea had the highest faunal orders (5), among organic material transfer system while other treatments had ≥3 orders. Unfertilized maize had one order. Calliandra colorthysus had the highest order diversity followed by maize stover > cattle manure > Cr. juncea > fully fertilized maize > unfertilized maize. Major groups identified were termites, earthworms, beetles, millipedes and ants. All taxa combined, cattle manure and miombo forest had the highest macrofauna abundance. This study showed that application of organic nutrient resources and use of improved fallows significantly influenced soil macrofauna order diversity and abundance.  相似文献   

9.
A 0.0625 m2 mini-box corer (MBC) was used to study the vertical distribution of macrobenthos in the shallow sublittoral zone of Admiralty Bay, during the 2003/2004 summer, near the Brazilian Station Comandante Ferraz, and the Peruvian Station Machu Picchu. Sediment samples were taken from 20, 30 and 60 m, and stratified for particle-size, total organic matter (TOM) and faunal composition analysis. The most abundant taxa were Polychaeta, Oligochaeta, Amphipoda, Cumacea, Bivalvia and Gastropoda. In general, macrofauna were concentrated in the 0–4 cm layer (64% of total organisms). Correlations between sediment characteristics and faunal densities have not completely explained neither the aggregation of organisms at the surface sediment layers nor the differences in faunal composition between locations at 20 m depth. Analysis of parameters such as organic carbon, heavy metals, interstitial water, and species composition should contribute to a better understanding of the diversity patterns found in this study.  相似文献   

10.

Background

In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management.

Methodology/Principal Findings

We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered.

Conclusions/Significance

The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists.  相似文献   

11.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.  相似文献   

12.
We sampled terrestrial molluscs at fifteen elevations between 400 and 2000 m in Mwanihana Forest Reserve, Tanzania and recorded 84 taxa. Four diversity measures – species density (DP), species richness (D20) and observed (SO) and interpolated (SI) alpha diversity – were measured; beta diversity and abundance were also investigated. Mean elevational range was 470 m. DP, D20, alpha diversity and mollusc abundance increased with elevation, but alpha diversity peaked at 1695 m (SO) or 1500 m (SI) and declined at higher elevations. Maximum beta diversity was at 1000 m. Soil pH was negatively correlated with elevation and DP. Cluster analysis divided the sites into lowland (400–900 m) and highland (>1000 m) groups. Axis 1 of a canonical correspondence analysis was associated with altitude and suggested a faunal discontinuity at 1000 m. Variation within the highland (>1000 m) and lowland faunal sets was related to elevation and forest structure respectively. The findings indicate that mollusc diversity peaks at intermediate elevations. This may be related to the combined effects of low rainfall conditions at low elevations and increasing effects of soil leaching at high elevations, both of which may limit mollusc diversity and abundance. Diversity at intermediate altitudes may be further elevated because of faunal mixing of lowland and highland groups.  相似文献   

13.
A survey of the benthic infauna (macro- and mesofauna) in tidalflats of Hinchinbrook Channel, north-east Australia, was carried out toassess the species diversity and individual abundances as well as theirtemporalvariations. Two sites were surveyed at five occassions from November 1988 toOctober 1991. In addition, spatial distributions over the intertidal gradientwere investigated once in May 1990. During the entire survey, over 200 specieswere recorded, with 53 species found on average at each sampling occassion.Species densities ranged from 4.0 to 8.2 species 177cm–2 for macrofauna and from 4.1 to 11.8 species10 cm–2 for mesofauna, but varied little betweensites. The average infaunal diversity (H') was 2.53. Individual abundancesreached median values of 14.0 individuals 177cm–2for macrofauna and 14.5 individuals 10 cm–2 formesofauna. Changes in total abundances were not related to season andinconsistent at the two study sites, with significantly higher abundancesoccurring either at site A or B on single sampling dates. Transects sampled inMay 1990 showed varying species compositions and abundances in the upper, midand lower intertidal, but no defined benthic communities were revealed bymultivariate analyses. Temporal variations in the benthic assemblages of thetwotidal flats in Hinchinbrook Channel were higher than variations between sites,with a separation of assemblages before and after 1989. Problems to assess andinterpret temporal changes in species rich tropical benthic communities arediscussed.  相似文献   

14.
The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project (“Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna”), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas.  相似文献   

15.
The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.  相似文献   

16.
Composition, abundance and stratification of soft-bottom macrobenthos were studied at three selected sites on the Ross Sea shelf (Antarctica) with different geomorphology and sedimentation regimes. Sites A (southwest Ross Sea, 810 m depth) and B (Joides basin, 580 m depth) were characterized by biogenic mud and clay sediments, whereas site C (Mawson bank, 450 m depth) featured sandy sediments mixed with a conspicuous biogenic component characterized by shells and tests of calcareous invertebrates (mainly barnacles of the genus Bathylasma). The macrofauna of sites A and B was mainly composed of infaunal polychaetes and bivalves. The assemblages comprised both surface and sub-surface deposit feeders, including some conveyor-belt polychaetes (Maldanidae and Capitellidae) that are responsible for high sediment mixing and bioturbation. The macrobenthos of site C was dominated by crustaceans, polychaetes and echinoderms (ophiuroids), and mainly by filter feeders and epifaunal or interstitial forms. Abundances were higher (up to 1040 ind. m−2) at site B than at sites A and C (430 and 516 ind. m−2, respectively). At sites A and B the benthos was mainly concentrated in the upper 5 cm of the sediment, and abundances declined sharply in the deeper sediment layers. These results indicate a high degree of consistency between sediment features and benthic community structure, which are both strongly related to local hydrography and bottom dynamics. Sites A and B represent areas where the organic input to the seafloor by vertical sedimentation from the upper water column is high. Site C, however, is characterized by high sediment instability and food particles advecting mainly horizontally. The community is more physically controlled by unpredictable, and probably frequent, disturbance events (e.g., bottom turbid currents, sediment reworking and displacement). Individuals were relatively small, indicating that probably they are not able to grow up to the adult size and reproduce. The community may be represented by “pseudopopulations” depending on the settlement of larvae invading from neighbouring areas. Accepted: 23 October 1998  相似文献   

17.
The composition and abundance of the meiofauna and macrofauna were studied in a survey carried out within 6 locations in a mangrove at the Island of Santa Catarina, South Brazil. Nine meiofaunal taxa were registered with densities ranging between 77 and 1589 inds.10 cm?2. The nematodes, composed by 94 putative species (86 genera), largely dominated the meiofauna. The most abundant genera were Haliplectus (Haliplectidae), Anoplostoma (Anoplostomatidae) and Terschillingia (Linhomoidae). Contrary to the meiofauna, the macrofauna showed a low number of taxa (only 17 recorded) and abundance (up 7250 inds.m?2). The macrofauna was mainly composed by deposit feeders, and numerically dominated by oligochaetes and capitellid polychaetes. For both components, differences in the composition and abundance along the sampling sites were significant but not primarily related to the typical variations along estuaries, such as salinity. The results of the stepwise multiple regression analyses showed that the detritus biomass (ash-free dry weight) was the most important predictor of faunal densities and diversity. The clear relationship between detritus and fauna, together with the contrasting community structure of the two component of the benthos suggest that the meiofauna showed a high efficiency in exploiting the micro-habitat created by the presence of the detritus. Yet the macrofauna, potentially the main consumer of the debris, is negatively affected by their low palatability and poor nutritive value.  相似文献   

18.
Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.  相似文献   

19.
Dan A. Smale 《Polar Biology》2008,31(2):189-198
Many shallow water polar communities demonstrate considerable change along a bathymetric gradient. However, it is currently unclear whether community change is generally continuous or discrete. To determine the nature of community change with depth, extensive photographic surveys at three sites at Adelaide Island, West Antarctic Peninsula, were conducted along a bathymetric gradient of 5–35 m depth. Macroalgae were largely absent at the sites, so only distinguishable macrofauna were counted and analysed. Faunal abundance was greatest at the shallowest stations of the depth transects, whilst richness at both species and phylum level increased with depth. Variability in community structure between replicate transects decreased with depth, so that assemblages at >25 m depth were more homogenous. Depth had a highly significant effect on total abundance, species richness and community structure, and it is likely that the frequency of ice disturbance, which also decreases with depth, drives this pattern. Overall, high variability between transects at each site was recorded, which suggested considerable patchiness at the scale of tens of meters. Community change along the bathymetric gradient was continuous and no evidence of discrete zones of assemblages was recorded.  相似文献   

20.
The effects of depth-related differences in environmental factors (pressure, hydrography, habitat and disturbance) on the benthic megafauna at the mouth of Kangerdlugssuaq Fjord in Arctic Greenland were investigated using a towed camera platform and autonomous underwater vehicle photographs. Large reductions in faunal density (60,132 to 1881 individuals ha-1) and increases in diversity (H'=0.93-2.54), through increases in richness (ES(220)=7.6-18.8) and reductions in dominance (Berger-Parker index=0.77-0.38) were found between 270 and 720 m water depth. Assemblages were separated into distinct shallow, intermediate and deep faunas by multivariate community analysis. In the shallower sites there were high levels of iceberg disturbance, directly reducing diversity as well as creating a complex, patchy environment inhabited by high densities of mobile suspension-feeding epifauna. In the deeper areas there was small-scale disturbance from the deposition of drop stones, but at a relatively low frequency and magnitude, which allowed increased species diversity. Proportions of deposit-feeding epifaunal and infaunal taxa rose with depth, as indicated by an increase with depth in faunal traces. Decreases in faunal density probably resulted from decreased food supply with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号