首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.  相似文献   

2.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging respiratory virus responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic. More than a year into this pandemic, the COVID-19 fatigue is still escalating and takes hold of the entire world population. Driven by the ongoing geographical expansion and upcoming mutations, the COVID-19 pandemic has taken a new shape in the form of emerging SARS-CoV-2 variants. These mutations in the viral spike (S) protein enhance the virulence of SARS-CoV-2 variants by improving viral infectivity, transmissibility and immune evasion abilities. Such variants have resulted in cluster outbreaks and fresh infection waves in various parts of the world with increased disease severity and poor clinical outcomes. Hence, the variants of SARS-CoV-2 pose a threat to human health and public safety. This review enlists the most recent updates regarding the presently characterized variants of SARS-CoV-2 recognized by the global regulatory health authorities (WHO, CDC). Based on the slender literature on SARS-CoV-2 variants, we collate information on the biological implications of these mutations on virus pathology. We also shed light on the efficacy of therapeutics and COVID-19 vaccines against the emerging SARS-CoV-2 variants.  相似文献   

3.
The coronavirus disease 2019 (COVID-19) global pandemic evoked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a major public health problem with significant morbidity and mortality. Understanding the pathogenesis and molecular mechanisms underlying this novel virus is crucial for both fundamental research and clinical trials in order to devise effective therapies and vaccination regimens. Basic research on SARS-CoV-2 largely depends on ex vivo models that allow viral invasion and replication. Organoid models are now emerging as a valuable tool to investigate viral biology and disease progression, serving as an efficient platform to investigate potential therapies for COVID-19. Here, we summarize various human stem cell-derived organoid types employed in SARS-CoV-2 studies. We highlight key findings from these models, including cell tropisms and molecular mechanisms in viral infection. We also describe their use in identifying potential therapeutic agents against SARS-CoV-2. As more and more advanced organoids emerge, they will facilitate the understanding of disease pathogenesis for drug development in this dreaded pandemic.  相似文献   

4.
Dear Editor, The rapid emergence and persistence of the pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has had enormous impacts on global health and the economy.Effective vaccines against SARS-CoV-2 are urgently needed to control the coronavirus disease 2019(COVID-19) pandemic,and multiple vaccines have been found to be efficacious in preventing symptomatic COVID-19(Polack et al.,2020;Wu et al.,2020;Jones and Roy,2021).We have developed a traditional beta-propiolactone-inacti-vated aluminum hydroxide-adjuvanted whole-virion SARS-CoV-2 vaccine (BBIBP-CorV),which elicited protective immune responses in clinical trials (Wang et al.,2020;Xia et al.,2021).The vaccine has been granted conditional approvals or emergency use authorizations (EUAs) in China and other countries.  相似文献   

5.
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an ongoing global health pandemic. Since 2019, the pandemic continues to cast a long shadow on all aspects of our lives, bringing huge health and economic burdens to all societies. With our in-depth understanding of COVID-19, from the initial respiratory tract to the later gastrointestinal tract and cardiovascular systems, the multiorgan involvement of this infectious disease has been discovered. Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named nonalcoholic fatty liver disease (NAFLD), is a major health issue closely related to metabolic dysfunctions, affecting a quarter of the world''s adult population. The association of COVID-19 with MAFLD has received increasing attention, as MAFLD is a potential risk factor for SARS-CoV-2 infection and severe COVID-19 symptoms. In this review, we provide an update on the interactions between COVID-19 and MAFLD and its underlying mechanisms.  相似文献   

6.
A  Ruhan  Wang  Huijuan  Wang  Wenling  Tan  Wenjie 《中国病毒学》2020,35(6):699-712
Virologica Sinica - The on-going global pandemic of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been...  相似文献   

7.
《Cell research》2021,(1):98-100
Dear Editor, Coronavirus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in a severe global pandemic.Fol...  相似文献   

8.
The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.  相似文献   

9.
Biochemistry (Moscow) - The novel coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health emergency...  相似文献   

10.
《Cell research》2021,(1):101-103
Dear Editor, The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in unprecedented public health and ...  相似文献   

11.
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has impacted the world severely. The binding of the SARS-CoV-2 virus to the angiotensin-converting enzyme 2 (ACE2) and its intake by the host cell is a necessary step for infection. ACE2 has garnered widespread therapeutic possibility as it is entry/interactive point for SARS-CoV-2, responsible for coronavirus disease 2019 (COVID-19) pandemic and providing a critical regulator for immune modulation in various disease. Patients with suffering from cancer always being on the verge of being immune compromised therefore gaining knowledge about how SARS-CoV-2 viruses affecting immune cells in human cancers will provides us new opportunities for preventing or treating virus-associated cancers. Despite COVID-19 pandemic got center stage at present time, however very little research being explores, which increase our knowledge in context with how SARS-CoV-2 infection affect cancer a cellular level. Therefore, in light of the ACE-2 as an important contributor of COVID-19 global, we analyzed correlation between ACE2 and tumor immune infiltration (TIL) level and the type markers of immune cells were investigated in breast cancer subtypes by using TIMER database. Our findings shed light on the immunomodulatory role of ACE2 in the luminal A subtype which may play crucial role in imparting therapeutic resistance in this cancer subtype.  相似文献   

12.
由严重急性呼吸系统综合症冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019年冠状病毒肺炎(COVID-19),其持续大流行已对世界公共卫生安全造成严重的危害。发展病毒检测技术并运用于卫生管理包括人员排查、患者鉴别与治疗、减缓病毒传播等方面已发挥了重要作用。本文简要概述了SARS-CoV-2生物学特征,对全球发展使用的SARS-CoV-2病毒主要检测技术和新兴发展检测技术进行了比较详尽的介绍,并对病毒检测技术进行了展望,以期为临床医疗诊断、公共卫生防护、疾病预防和控制等提供理论和技术帮助。  相似文献   

13.
The coronavirus disease 2019 (COVID-19) pandemic was caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus has challenged civilization and modern science in ways that few infectious diseases and natural disasters have previously, causing globally significant human morbidity and mortality and triggering economic downturns across financial markets that will be dealt with for generations. Despite this, the pandemic has also brought an opportunity for humanity to come together and participate in a shared scientific investigation. Clinically, SARS-CoV-2 is associated with lower mortality rates than other recently emerged coronaviruses, such as SARS-CoV and the Middle East respiratory syndrome coronavirus (MERS-CoV). However, SARS-CoV-2 exhibits efficient human-to-human spread, with transmission often occurring before symptom recognition; this feature averts containment strategies that had worked previously for SARS-CoV and MERS-CoV. Severe COVID-19 disease is characterized by dysregulated inflammatory responses associated with pulmonary congestion and intravascular coagulopathy leading to pneumonia, vascular insults, and multiorgan disease. Approaches to treatment have combined supportive care with antivirals, such as remdesivir, with immunomodulatory medications, including corticosteroids and cytokine-blocking antibody therapies; these treatments have advanced rapidly through clinical trials. Innovative approaches to vaccine development have facilitated rapid advances in design, testing, and distribution. Much remains to be learned about SARS-CoV-2 and COVID-19, and further biomedical research is necessary, including comparative medicine studies in animal models. This overview of COVID-19 in humans will highlight important aspects of disease, relevant pathophysiology, underlying immunology, and therapeutics that have been developed to date.

In December 2019, a cluster of cases of pneumonia without a clear etiology occurred in Wuhan, China. With remarkable speed and efficiency, the etiology of this illness was soon identified as a novel coronavirus; the complete viral genome was sequenced and published on January 10, 2020.182 These events introduced the world to coronavirus disease 2019 (COVID-19). The disease, now known to be caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into the most significant pandemic of recent times. In less than a year since the virus was first recognized, multiple candidate vaccines were developed worldwide, and some of them rapidly progressed to clinical trials and widespread administration. As the pandemic continues, a number of sequence variants of the virus have emerged around the world. This continued viral evolution highlights the need for continued biomedical research to facilitate understanding of the pathogenesis of COVID-19, seeking innovative therapeutic and preventative strategies for the current and possibly future pandemics. This article will review aspects of SARS-CoV-2 infection of humans and COVID-19, focusing on important aspects of clinical disease, pathophysiology, immunology, and the development of therapeutic and preventative measures to provide context for discussion of the animal models used to study SARS-CoV-2 and COVID-19.  相似文献   

14.

In the late autumn of 2019, a new potentially lethal human coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The pandemic spread of this zoonotic virus has created a global health emergency and an unprecedented socioeconomic crisis. The severity of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV?2, is highly variable. Most patients (~85%) develop no or mild symptoms, while others become seriously ill, some succumbing to disease-related complications. In this review, the SARS-CoV?2 life cycle, its transmission and the clinical and immunological features of COVID-19 are described. In addition, an overview is presented of the virological assays for detecting ongoing SARS-CoV?2 infections and the serological tests for SARS-CoV-2-specific antibody detection. Also discussed are the different approaches to developing a COVID-19 vaccine and the perspectives of treating COVID-19 with antiviral drugs, immunomodulatory agents and anticoagulants/antithrombotics. Finally, the cardiovascular manifestations of COVID-19 are briefly touched upon. While there is still much to learn about SARS-CoV?2, the tremendous recent advances in biomedical technology and knowledge and the huge amount of research into COVID-19 raise the hope that a remedy for this disease will soon be found. COVID-19 will nonetheless have a lasting impact on human society.

  相似文献   

15.
Dear Editor, The ongoing coronavirus disease 2019(COVID-19)global pandemic is caused by a novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which instigates severe and often fatal symptoms.As of September 4th,2020,more than 26 million cases of COVID-19 and almost 900,000 deaths have been reported to WHO.Based on Kissler and colleagues'modeled projections of future viral transmission scenarios,a resurgence in SARS-CoV-2 could occur over the next five years(Kissler et al.,2020).Research and clinical trials are underway to develop vacci-nes and treatments for COVID-19,but there are currently no specific vaccines or treatments for COVID-19(www.who.int),and therapeutic and prophylactic interventions are urgently needed to combat the outbreak of SARS-CoV-2.Of partic-ular importance is the identification of drugs which are effective,less-intrusive,most socioeconomic,and ready-to-use.  相似文献   

16.
During the 2 years since the start of the novel coronavirus disease 2019 (COVID-19) pandemic, the scientific world made an enormous effort to fight against this disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has high transmissibility. Advancements in vaccine and treatment strategies have reduced both the hospitalization and mortality rates. However, the virus has shown its ability to evolve and evade from our COVID-19 combating armamentaria by the most common evolution mechanism—mutation. Diagnostic testing has been the first line of defense following the identification of the causative agent. Ever since, the scientific community has developed nuclei acid-based, antigen-based, and antibody-based diagnostic tests, and these testing methodologies are still playing a central role in slowing down viral transmission. These testing methods have different sensitivity and specificity and could be optimally used in areas facing different challenges owing to different level and conditions of COVID-19 outbreak. In this review, we discuss these testing methodologies as well as the considerations on how to apply these diagnostic tests optimally in the community to cope with the ever-changing pandemic conditions.  相似文献   

17.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which lacks an open reading frame and is more than 200 nucleotides in length. However, the functions for lncRNAs in COVID-19 have not been unravelled. The present study aimed at identifying the related lncRNAs based on RNA sequencing of peripheral blood mononuclear cells from patients with SARS-CoV-2 infection as well as health individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were enrolled in this study. Firstly, we reported some altered lncRNAs between severe, non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA panel with a good differential ability between severe and non-severe COVID-19 patients using least absolute shrinkage and selection operator regression. Finally, we observed that COVID-19 is a heterogeneous disease among which severe COVID-19 patients have two subtypes with similar risk score and immune score based on lncRNA panel using iCluster algorithm. As the roles of lncRNAs in COVID-19 have not yet been fully identified and understood, our analysis should provide valuable resource and information for the future studies.  相似文献   

18.
新型冠状病毒肺炎(简称新冠)疫情仍在发展,新型冠状病毒变异株的出现致使其传染性和致病性增强,部分国家的政府和民众防控措施松懈导致某些地区疫情加剧。新型冠状病毒疫苗广泛使用后,接种情况会影响疫情发展。本文主要阐述新冠疫情与疫苗接种、病毒变异的关联性,接种疫苗存在的问题及其应对措施,并建议在加快疫苗接种的同时应做好各项新冠防控工作。  相似文献   

19.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.  相似文献   

20.
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号