首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mu Y  Wang G  Yu HQ 《Bioresource technology》2006,97(11):1302-1307
The kinetics of batch anaerobic hydrogen production by mixed anaerobic cultures was systemically investigated in this study. Unstructured models were used to describe the substrate utilization, biomass growth and product formation in the hydrogen production process. The relationship between the substrate, biomass and products were also evaluated. Experimental results show that the Michaelis-Menten equation, Logistic model and modified Gompertz equation all could be adopted to respectively describe the kinetics of substrate utilization, biomass growth and product formation. Furthermore, the relationship between the acidogenic products and biomass was simulated by Luedeking-Piret model very well. The experimental results suggest that the formation of hydrogen and the main aqueous products, i.e., butyrate and acetate, was all growth-associated.  相似文献   

2.
Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor   总被引:46,自引:0,他引:46  
It has been found, in this study, that a new ethanol-type fermentation can be obtained in a continuous flow, high-rate acidogenic reactor receiving molasses as the feed. The operating pH must be maintained at about 4.5 to avoid onset of propionic fermentation. The acidogenic reactor had a VSS level of 20 g/L and its organic loading was as high as 80 to 90 kg COD/m(3) d. The operating ORP was around -250 mV. The ethanol-type fermentation was characterized by a simultaneous production of acetic acid and ethanol, while the yield of propionic was minimal even at a high organic loading rate of 80 to 90 kg COD/m(3) d, and also, the hydrogen partial pressure was as high as 50 kPa. Thus, this study has shown that the production of propionic acid is not always related to high hydrogen partial pressure. When the operating pH was increased to 5.5, the yield of propionic acid became significant. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 428-433, 1997.  相似文献   

3.
The model of anaerobic digestion described earlier by the authors was used for analysis of the different phases of the process. It was shown that at the glucose conversion a coexistence of hydrogen-producing acidogenic bacteria and hydrogen-utilizing non-methanogenic bacteria causes a hydrogen partial pressure decrease at an increase of solids retention time (i), the intensity of the negative feed-back effect in sulfate-reduction through hydrogen sulfide formation is regulated by the pH level during an oscillation dynamics in acetate/sulfate system (ii), under the toxicity influence the processes of methanogenesis and acetogenesis together with hydrolysis may be rate-limiting steps in the anaerobic system with particulate substrate degradation (iii).Abbreviations B1, B2 two groups of acidogens - DS total dissolved sulfide concentration - HRT hydraulic retention time - MPB methane-producing bacteria - SRB sulfate-reducing bacteria - SRT solids retention time - VFA's volatile fatty acids  相似文献   

4.
A dialysis culture device was used for growth of syntrophic fatty acid-oxidizing and ethanol-oxidizing anaerobic bacteria. A pure culture of the fatty acid oxidizer Clostridium bryantii was grown inside dialysis tubing which was surrounded by a pure culture of Desulfovibrio vulgaris. The same apparatus was used for the syntrophic cultivation of Pelobacter acetylenicus and Acetobacterium woodii with ethanol as substrate. In both cases, substrate degradation and product formation were about half as fast as with the homogeneously mixed control cultures. In the compartment of the hydrogen producer, the concentration of free hydrogen during syntrophic ethanol degradation was about 10 times as high as in that of the hydrogen utilizer, whereas the homogeneously mixed culture exhibited an intermediate hydrogen partial pressure.  相似文献   

5.
Degradation of phenol under meso- and thermophilic, anaerobic conditions   总被引:1,自引:0,他引:1  
Based on the results of preliminary studies on phenol degradation under mesophilic conditions with a mixed methanogenic culture, we proposed a degradation pathway in which phenol is fermented to acetate: Part of the phenol is reductively transformed to benzoate while the rest is oxidised, forming acetate as end product. According to our calculations, this should result in three moles of phenol being converted to two moles of benzoate and three moles of acetate (3 phenol + 2 CO2 + 3 H2O --> 3 acetate + 2 benzoate): To assess the validity of our hypothesis concerning the metabolic pathway, we studied the transformation of phenol under mesophilic and thermophilic conditions in relation to the availability of hydrogen. Hence, methanogenic meso- and thermophilic cultures amended with phenol were run with or without an added over-pressure of hydrogen under methanogenic and non-methanogenic conditions. Bromoethanesulfonic acid (BES) was used to inhibit methanogenic activity. In the mesophilic treatments amended with only BES, about 70% of the carbon in the products found was benzoate. During the course of phenol transformation in these BES-amended cultures, the formation pattern of the degradation products changed: Initially nearly 90% of the carbon from phenol degradation was recovered as benzoate, whereas later in the incubation, in addition to benzoate formation, the aromatic nucleus degraded completely to acetate. Thus, the initial reduction of phenol to benzoate resulted in a lowering of H2 levels, giving rise to conditions allowing the degradation of phenol to acetate as the end product. Product formation in bottles amended with BES and phenol occurred in accordance with the hypothesised pathway; however, the overall results indicate that the degradation of phenol in this system is more complex. During phenol transformation under thermophilic conditions, no benzoate was observed and no phenol was transformed in the BES-amended cultures. This suggests that the sensitivity of phenol transformation to an elevated partial pressure of H2 is higher under thermophilic conditions than under mesophilic ones. The lack of benzoate formation could have been due to a high turnover of benzoate or to a difference in the phenol degradation pathway between the thermophilic and mesophilic cultures.  相似文献   

6.
Summary Large amounts of data indicated that most of the metabolic processes of the acidogenic (acid producing) and the solventogenic (solvent producing) fermentations were regulated by product accumulation. A simple unstructured model simulated microbial growth, product formation and substrate utilization in six different fermentations, where five different microorganisms produced various combinations of ten different products. Specific growth rates of these microorganisms decreased proportionally with overall product accumulation. The products were excreted in non-growth associated pattern. Excretion of some of these products were inhibited by the overall product accumulation similarly as the microbial growth. A substrate consumption model which considered the biomass and individually all the products as separate substrate sinks simulated the data satisfactorily.  相似文献   

7.
Li X  Wang Y  Zhang S  Chu J  Zhang M  Huang M  Zhuang Y 《Bioresource technology》2011,102(2):1142-1148
The effects of light/dark cycle, mixing pattern and partial pressure of H2 on the growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated. The results from light/dark cycle culture showed that little or no hydrogen production was observed during the dark periods, and the hydrogen production immediately recovered once illumination was resumed. Also, it was found that the optimum condition of shaking velocity was 120 rpm for hydrogen photo-fermentation. Meanwhile, shaking during H2 production phase (i.e., cell growth stationary phase) of photo-fermentation played a crucial role on effectively enhancing the phototrophic hydrogen production, rather than that during cell exponential growth phase. The other factor evaluated was hydrogen partial pressure in the culture system. The substrate conversion efficiency increased from 86.07% to 95.56% along with the decrease of the total pressure in the photobioreactor from 1.082 × 105 to 0.944 × 105 Pa, which indicated that reduction of H2 partial pressure by lowering the operating pressure substantially improved H2 production in an anaerobic, photo-fermentation process.  相似文献   

8.
The effect of hydrogen and carbon dioxide partial pressure on the growth of the extremely thermophilic archaebacterium Pyrodictium brockii at 98 degrees C was investigated. Previous work with this bacterium has been done using an 80:20 hydrogen-carbon dioxide gas phase with a total pressure of 4 atm; no attempt has been made to determine if this mixture is optimal. It was found in this study that reduced hydrogen partial pressures affected cell yield, growth rate, and sulfide production. The effect of hydrogen partial pressure on cell yield and growth rate was less dramatic when compared to the effect on sulfide production, which was not found to be growth-associated. Carbon dioxide was also found to affect growth but only at very low partial pressures. The relationship between growth rate and substrate concentration could be correlated with a Monod-type expression for either carbon dioxide or hydrogen as the limiting substrate. The results from this study indicate that a balance must be struck between cell yields and sulfide production in choosing an optimal hydrogen partial pressure for the growth of P. brockii.  相似文献   

9.
The requirements for pH buffer addition for hydrogen production and acidogenesis in batch acidogenic digestion of a food waste (FW) feedstock with limited alkalinity was studied at various initial pH conditions (6.0–8.0). The results showed that, without buffer addition, hydrogen production from this feedstock was insignificant regardless of the initial pH. With buffer addition, hydrogen production improved significantly if the initial pH was greater than 6.0. Substantial hydrogen production occurred when the pH at the end of the batch digestion was higher than 5.5. The maximum hydrogen production was found to be 120 mL/g VS added when the initial pH was 6.5 and buffer addition was in the range of 15–20 mmol/g VS. The effect of pH buffering on the formation of volatile fatty acids (acetic acid, propionic acid and butyric acid) was similar to its effect on hydrogen production. The results of this study clearly indicated shifts in the metabolic pathways with the pH of fermentation. The changes in metabolic pathways impacted upon the dosage of buffer that was required to achieve maximum hydrogen generation.  相似文献   

10.
Summary Clostridium acetobutylicum ATCC 824 was submitted to repeated subculturing at 24-hour intervals for 218 days. The organism retained its ability to form solvents, although the fermentation slowly became increasingly acidogenic during the first 200 days. Except for the initial spore inoculum, the cultures were not subjected to heat shocking between the serial transfers. When the inoculum volume was doubled from 3.3% to 6.7% after 200 days of subculturing, the product formation pattern quickly shifted back from acids to primarily butanol. Acetone production also resumed after being undetectable for more than 50 days. The relative formation of acetate and ethanol remained nearly constant throughout the experiments, while the formation of butyrate mirrored that of butanol.  相似文献   

11.
Summary The metabolite pattern of batch cultures ofLactobacillus casei LMG 6400,Clostridium butyricum LMG 1213t1 andEscherichia coli LMG 2093 was effected only for the latter organism when the H2 partial pressure was below 1 atmosphere: high hydrogen partial pressures increased the formate formation, low pressures gave rise to increased acetate production and higher cell yields.  相似文献   

12.
Batch cultures of Clostridium acetobutylicum, were examined with 0, 0.1 and 1 mM methyl viologen addition at four different controlled pH values (between 4.5 and 6.5). Methyl viologen addition diverted the electron flow: reducing equivalents normally released as molecular hydrogen were directed towards NAD(P)H formation. Production of butanol, the most reduced non-gaseous product, was sharply increased (0.65 mol/mol glucose) at the expense of acetone and butyric and acetic acids. In addition to butanol and lactate production, NADH excess induced the formation of glycerol, a product that has never been reported to be formed by C. acetobutylicum. Metabolic perturbation brought about by the electron carrier led to a reduction of the growth rate and an increase of the lag phase. A correlation between the shape of the redox potential curve and the switch from an acidogenic to a solventogenic metabolism is reported.  相似文献   

13.
Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe inhibitor when allowed to accumulate in the culture. Concentrations of 5-10 mM H(2) in the gas phase (identical with partial hydrogen pressure (pH(2)) of (1-2) x 10(4) Pa) initiated a metabolic shift to lactate formation. The extent of inhibition by hydrogen was dependent on the density of the culture. The highest tolerance for hydrogen was found at low volumetric hydrogen production rates, as occurred in cultures with low cell densities. Under those conditions the critical hydrogen concentration in the gas phase was 27.7 mM H(2) (identical with pH(2) of 5.6 x 10(4) Pa); above this value hydrogen production ceased completely. With an efficient removal of hydrogen sucrose fermentation was mainly inhibited by sodium acetate. The critical concentrations of sucrose and acetate, at which growth and hydrogen production was completely inhibited (at neutral pH and 70 degrees C), were 292 and 365 mM, respectively. Inorganic salts, such as sodium chloride, mimicked the effect of sodium acetate, implying that ionic strength was responsible for inhibition. Undissociated acetate did not contribute to inhibition of cultures at neutral or slightly acidic pH. Exposure of exponentially growing cultures to concentrations of sodium acetate or sodium chloride higher than ca. 175 mM caused cell lysis, probably due to activation of autolysins.  相似文献   

14.
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L?1 compared to 59.3 g L?1), but the final formate concentration was increased by a factor of 18 (7.3 g L?1 compared to 0.4 g L?1). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood–Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood–Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.  相似文献   

15.
16.
Mixed culture fermentations are of interest for the low-cost production of organic acids from complex agricultural waste streams. Models are developed for these processes in order to predict the product spectrum as a function of the environmental process conditions. An important assumption in many existing models for anaerobic mixed culture fermentations is that the NADH/NAD+ ratio is directly coupled to the dissolved hydrogen partial pressure (pH2, liquid). In this study, this assumption was tested experimentally with mixed culture chemostats operated at dilution rates of 0.05 and 0.125 h?1 for a wide range of calculated dissolved hydrogen partial pressures (0.04–6.8 atm). No correlation was found between pH2, liquid and the NADH/NAD+ ratio. This result, together with thermodynamic calculations, suggests that additional electron carriers such as ferredoxin and formate should be included in models predicting product formation by mixed cultures.  相似文献   

17.
Abstract Hydrogenase activity was characterized in cell extracts of Propionispira arboris that consumed or produced H2, coupled to methyl viologen reduction, and displayed highest levels (2.6 μmol/min/mg protein) in extracts prepared from fumarate-grown cells. Reversible hydrogenase activity in cell extracts correlated with the production of low levels of hydrogen during the growth phase and its subsequent consumption during the stationary phase of cells grown on glucose or lactate as the carbon and energy source. The addition of exogenous hydrogen to glucose, lactate or fumarate-grown cells dramatically increased propionate production at the expense of acetate formation. This accounted for the formation of propionate as nearly the sole end product of glucose fermentation under two atmospheres of hydrogen. The physiological function of hydrogenase in regulation of carbon and electron flow, and the significance of the results in applied and environmental microbiology are discussed.  相似文献   

18.
Acidogenic fermentation of lactose was carried out in a continuous stirred reactor with a mixed anaerobic culture. From the variation of the reactor products with pH and dilution rate two possible carbon flow schemes were proposed for the reaction. In both schemes the carbon flow from pyruvate to butyrate and lactate was assumed to occur in parallel. A change in gas composition and in product concentrations at dilution rates between 0.1 and 0.15 h(-1) for pH levels between 4.5 and 6.0 was ascribed to a shift in microbial population. To clarify the mechanism radiotracer tests were made using [U-(14)C]-butyrate, [2-(14)C]-propionate and [U-(14)C]-lactate to determine the path of carbon flow during acidogenesis of lactose using a mixed culture. At a dilution rate between 0.1 and 0.15 h(-1) and pH from 4.5 to 6.0 a rise in the lactate concentration in the product was shown to be due to a microbial population shift which disabled the conversion of lactate to other intermediary metabolites. It was also found that the flow of carbon from pyruvate to butyrate and lactate occurred by parallel pathways. Also, in the presence of hydrogen reducing methanogens, lactate was almost completely converted to acetate and not propionate. Butyrate was found to be converted to acetate at a slow rate as long as hydrogen reducing methanogens were present. The role played by propionibacteria in this lactose acidogenic eocosystem was minor. From the carbon flow model it can be concluded that lactate is the most suitable marker for optimizing an acidogenic reactor in a two-phase biomethanation process.  相似文献   

19.
At high viable cell concentrations in large-scale mammalian cell culture processes, the accumulation of dissolved carbon dioxide (dCO(2), typically quantified as an equilibrium gas-phase concentration) becomes problematic as a result of low CO(2) removal rates at reduced surface-to-volume ratios. High dCO(2) concentrations have previously been shown to inhibit cell growth and product formation in mammalian cells and to alter the glycosylation pattern of recombinant proteins. Therefore, reliable monitoring and control of dCO(2) are important for successful large-scale operation. Off-line measurements by instruments such as blood gas analyzers (BGA) are constrained by the low frequency of data collection and cannot be used for on-line control. In a preliminary evaluation of the YSI 8500 in situ sensor, a response time (t(90%)) of 6 min, sensitivity of 0.5% CO(2) (3.6 mmHg), and linearity of measurement (R(2) = 0.9997) between the equivalent gas-phase partial pressure of 0-180 mmHg (0% and 25% CO(2)) were established. Measurements were found to be unaffected by culture pH and typical mammalian cell culture concentrations of glucose, glutamine, glutamate, lactate, and ammonium. The sensor withstood repeated sterilization and cleaning cycles. The reliability of this sensor was demonstrated in microcarrier-based Chinese hamster ovary (CHO) cell perfusion cultures at reactor scales of 30, 40, 340, and 2000 L and was successfully implemented in a dCO(2) control strategy using N(2) sparging.  相似文献   

20.
Modeling product formation in anaerobic mixed culture fermentations   总被引:1,自引:0,他引:1  
The anaerobic conversion of organic matter to fermentation products is an important biotechnological process. The prediction of the fermentation products is until now a complicated issue for mixed cultures. A modeling approach is presented here as an effort to develop a methodology for modeling fermentative mixed culture systems. To illustrate this methodology, a steady-state metabolic model was developed for prediction of product formation in mixed culture fermentations as a function of the environmental conditions. The model predicts product formation from glucose as a function of the hydrogen partial pressure (P(H2)), reactor pH, and substrate concentration. The model treats the mixed culture as a single virtual microorganism catalyzing the most common fermentative pathways, producing ethanol, acetate, propionate, butyrate, lactate, hydrogen, carbon dioxide, and biomass. The product spectrum is obtained by maximizing the biomass growth yield which is limited by catabolic energy production. The optimization is constrained by mass balances and thermodynamics of the bioreactions involved. Energetic implications of concentration gradients across the cytoplasmic membrane are considered and transport processes are associated with metabolic energy exchange to model the pH effect. Preliminary results confirmed qualitatively the anticipated behavior of the system at variable pH and P(H2) values. A shift from acetate to butyrate as main product when either P(H2) increases and/or pH decreases is predicted as well as ethanol formation at lower pH values. Future work aims at extension of the model and structural validation with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号