首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study shows that, in control and transgenic mice, there is a parallel increase in LCAT activity and plasma apo A-I concentrations during postnatal development. We also demonstrate that human apo A-I is a much more efficient activator (1.6-fold) of mouse LCAT activity than mouse apo A-I. We propose that the differences in amino acid sequence between human and mouse apo A-I may account for the higher LCAT activity with human apo A-I.  相似文献   

2.
The action of lecithin-cholesterol acyltransferase (LCAT, EC 2.3.1.43) on the different pig lipoprotein classes was investigated with emphasis on low-density lipoproteins (LDL). It was demonstrated previously that LDL can serve as substrate for LCAT, probably because they contain sufficient amounts of apoA-I and other non-apoB proteins, known as LCAT activators. Upon a 24-h incubation of pig plasma in vitro in the presence of active LCAT, both pig LDL subclasses, LDL-1 and LDL-2, fused together, forming one fraction, as revealed by analytical ultracentrifugation. This fusion was time dependent, becoming visible after 3 h and complete after 18 h of incubation. Concomitantly, free cholesterol and phospholipids decreased and cholesteryl esters increased. When isolated LDL-1 and LDL-2 were incubated with purified pig LCAT for 24 h, LDL-1 floated toward higher densities and LDL-2 toward lower densities, although this effect was not as pronounced as in incubations of whole serum. In further experiments, pig serum was incubated for various periods of time in the presence and absence of the LCAT inhibitor sodium iodoacetate. The individual lipoproteins then were separated by density gradient ultracentrifugation or by specific immunoprecipitation and chemically analyzed. Both methods revealed that in the absence of active LCAT there was a transfer of free cholesterol from LDL to high-density lipoproteins (HDL) and a small transfer of cholesteryl esters in the opposite direction. In the presence of LCAT the loss of free cholesterol started immediately in all three lipoprotein classes, was most prominent in LDL, and was proportional to the newly synthesized cholesteryl esters incorporated in each fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Various combinations of incorporation and addition of apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) individually or together to a defined lecithin-cholesterol (250/12.5 molar ratio) liposome prepared by the cholate dialysis procedure were used to study the effect of apo A-II on lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) activity of both purified enzyme preparations and plasma. When apo A-I (0.1-3.0 nmol/assay) alone was incorporated or added to the liposome, apo A-I effectively activated the enzyme. By contrast, when apo A-II (0.1-3.0 nmol/assay) alone was incorporated into or added to the liposome, apo A-II exhibited minimal activation of LCAT activity, approximately 1% of the activity obtained by an equal amount of apo A-I. Addition of apo A-II (0.1-3.0 nmol/assay) together with apo A-I (0.8 nmol/assay) to the liposome reduced the LCAT activity to approximately 30% of the level obtained with addition of apo A-I alone. On the other hand, addition of apo A-II (0.1-3.0 nmol/assay) or addition of lecithin-cholesterol liposome containing apo A-II (0.1-3.0 nmol/assay) to lecithin-cholesterol liposome containing apo A-I (0.8 nmol/assay) did not significantly alter apo A-I activation of LCAT activity. However, when the same amounts (0.1-3.0 nmol/assay) of apo A-II were incorporated together with apo A-I (0.8 nmol/assay) into the liposome, apo A-II significantly stimulated LCAT activity as compared to activity obtained with incorporation of apo A-I alone. The maximal stimulation was obtained with 0.4 nmol apo A-II/assay for both purified and plasma enzyme. At this apo A-II concentration, approximately 4-fold and 1.8-fold stimulation was observed for purified enzyme and plasma enzyme, respectively. These results indicated that apo A-II must be incorporated together with apo A-I into lecithin-cholesterol liposomes to exert its stimulatory effect on LCAT activity and that apo A-II in high-density lipoprotein may play an important role in the regulation of LCAT activity.  相似文献   

4.
Our previous studies have indicated that lecithin-cholesterol acyltransferase (LCAT) contributes significantly to the apoB lipoprotein cholesteryl ester (CE) pool. Cholesterol esterification rate (CER) in apoA-I(-)(/)(-) apoE(-)(/)(-) mouse plasma was <7% that of C57Bl/6 (B6) mouse plasma, even though apoA-I(-)(/)(-) apoE(-)(/)(-) plasma retained (1)/(3) the amount of B6 LCAT activity. This suggested that lack of LCAT enzyme did not explain the low CER in apoA-I(-)(/)(-) apoE(-)(/)(-) mice and indicated that apoE and apoA-I are the only major activators of LCAT in mouse plasma. Deleting apoE on low-density lipoprotein (LDL) reduced CER (1% free cholesterol (FC) esterified/h) compared to B6 (6% FC esterified/h) and apoA-I(-)(/)(-) (11% FC esterified/h) LDL. Similar sized LDL particles from all four genotypes were isolated by fast protein liquid chromatography (FPLC) after radiolabeling with [(3)H]-free cholesterol (FC). LDLs (1 microg FC) from each genotype were incubated with purified recombinant mouse LCAT; LDL particles from B6 and apoA-I(-)(/)(-) plasma were much better substrates for CE formation (5.7% and 6.3% CE formed/30 min, respectively) than those from apoE(-)(/)(-) and apoE(-)(/)(-) apoA-I(-)(/)(-) plasma (1.2% and 1.1% CE formed/30 min). Western blot analysis showed that the amount of apoA-I on apoE(-)(/)(-) LDLs was higher compared to B6 LDL. Adding apoE to incubations of apoA-I(-)(/)(-) apoE(-)(/)(-) very low density lipoprotein (VLDL) resulted in a 3-fold increase in LCAT CER, whereas addition of apoA-I resulted in a more modest 80% increase. We conclude that apoE is a more significant activator of LCAT than apoA-I on mouse apoB lipoproteins.  相似文献   

5.
In a recent study from this laboratory, rhesus monkeys fed a 90% palm oil/10% soybean oil-containing diet (PS), rich in 16:0 and 18:1 fatty acids, had decreased total and LDL cholesterol concentrations compared to monkeys fed a 90% coconut oil/10% soybean oil-containing diet (CS), rich in 12:0 and 14:0 fatty acids. To investigate the metabolic basis of these changes, homologous 125I-VLDL and 131I-LDL were injected simultaneously into eight monkeys (four per dietary group). Analysis of apo B specific activity curves revealed that PS monkeys had an increased pool size of VLDL apo B (P less than 0.02), a 3-fold increase in the total VLDL apo B transport rate (P less than 0.001), a decreased pool size of LDL apo B (P less than 0.01) and a 2-fold decrease in the total transport rate of LDL apo B (P less than 0.001), while the irreversible FCR for VLDL apo B and LDL apo B was similar between dietary groups. PS monkeys derived a greater percentage of LDL apo B from VLDL catabolism resulting in a greater transport rate of LDL apo B from VLDL catabolism (P less than 0.055), in comparison to CS monkeys. For CS monkeys the proportion as well as the amount of LDL apo B derived from VLDL-independent catabolism (i.e., LDL apo B derived from sources other than VLDL catabolism) was higher (P less than 0.001) than the values obtained in PS monkeys. In both dietary groups the proportion of VLDL apo B converted to LDL apo B was similar, although the absolute amount was higher for the PS monkeys (P less than 0.06). The proportion of VLDL apo B directly removed from the circulation was similar for both dietary groups, with the absolute amount being higher for the PS monkeys (P less than 0.001). Consistent with the lower pool size of LDL apo B and the higher pool size of VLDL apo B observed in PS monkeys, plasma and LDL cholesterol concentrations tended to be lower, whereas plasma triacylglycerol and VLDL cholesterol concentrations tended to be higher, but these changes were not statistically significant. Although total apo B and VLDL apo B transport rates were increased 2-3-fold in PS monkeys, LDL apo B concentration was reduced by 40% (P less than 0.02) attributed to a significant reduction in the mass and proportion of LDL apo B derived independent of VLDL catabolism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The role of high density lipoproteins (HDL), their subfractions (HDL2 and HDL3) and lecithin: cholesterol acyltransferase (LCAT) on peroxidative modification of low density lipoproteins (LDL) in vitro was studied. Peroxidative modification was estimated by the formation of malonic dialdehyde (MDA) and LDL aggregates during LDL incubation at 37 degrees C for several days without Fe2+ or for 2 hours in the presence of Fe2+ in EDTA-free media. It was shown that the addition of HDL3 (but not HDL2) markedly decreases the formation of both MDA and LDL aggregates. Since LCAT is bound to HDL3, its effect was examined. An addition of LCAT isolated from human plasma (650-fold purification) at a concentration of 450 micrograms/ml resulted in a complete inhibition of LDL peroxidation and LDL aggregate formation. Heat-inactivated LCAT had no effect. Possible mechanisms of the protective effect of LCAT on LDL peroxidative modification are discussed.  相似文献   

7.
The possible involvement of lecithin-cholesterol acyltransferase (LCAT) in the metabolism of oxidized phosphatidylcholine (PC) in plasma was investigated. A variety of oxidized products are formed from PC following oxidation of low density lipoproteins (LDL). A significant increase in LDL oxidation levels in patients with familial LCAT deficiency (FLD) has been previously demonstrated by a sensitive sandwich ELISA for oxidized LDL using the monoclonal antibody DLH3 which recognizes oxidized products of PC. In the present study, we found that LCAT produces various metabolites from oxidized PC and that oxidized PC molecules in LDL particles serve as substrates. When the neutral lipid fraction was separated by TLC after the incubation of oxidized 1-palmitoyl-2-[1-14C]linoleoyl PC with human plasma, a number of radioactive bands were formed in addition to cholesteryl ester. These products were not formed from native 1-palmitoyl-2-[1-14C]linoleoyl PC. Plasma from FLD patients also failed to form the additional products from oxidized PC. The addition of dithio-bis(nitrobenzoate) (DTNB), an LCAT inhibitor, or the inactivation of LCAT activity by treating the plasma at 56 degrees C for 30 min abolished the generation of these products from oxidized PC. The activity was recovered in the high density lipoprotein (HDL) fraction but not in the LDL fraction separated from normal plasma. When 1-palmitoyl-2-[1-14C](9-oxononanoyl) PC and 1-stearoyl-2-[1-14C](5-oxovaleroyl)PC, PC oxidation products that contain short chain aldehydes, were incubated with human plasma, radioactive products in the neutral lipid fraction were observed on TLC. LDL containing oxidized PC was measured by sandwich ELISA using an anti-apolipoprotein B antibody and DLH3. The reconstituted oxidized PC-LDL particles were found to have lost their ability to bind DLH3 upon incubation with HDL, while the reactivity of the reconstituted oxidized PC-LDL remained unchanged in the presence of DTNB. These results suggest that LCAT is capable of metabolizing a variety of oxidized products of PC and preventing the accumulation of oxidized PC in circulating LDL particles.  相似文献   

8.
The size of low density lipoproteins (LDL) is strongly correlated with LDL cholesteryl ester (CE) content and coronary artery atherosclerosis in monkeys fed cholesterol and saturated fat. African green monkeys fed 11% (weight) fish oil diets have smaller LDL and less CE per LDL particle than lard-fed animals. We hypothesized that this might be due to a lower plasma lecithin:cholesterol acyltransferase (LCAT) activity in fish oil-fed animals. Using recombinant particles made of egg yolk lecithin-[14C]cholesterol-apoA-I as exogenous substrate, we found no difference in plasma LCAT activity (27 versus 28 nmol CE formed per h/ml) of fish oil- versus lard-fed animals, respectively; furthermore, no diet-induced difference in immunodetectable LCAT was found. However, plasma phospholipids from fish oil-fed animals were over 4-fold enriched in n-3 fatty acids in the sn-2 position compared to those of lard-fed animals. Additionally, the proportion of n-3 fatty acid-containing CE products formed by LCAT, relative to the available n-3 fatty acid in the sn-2 position of phospholipids, was less than one-tenth of that for linoleic acid. The overall rate of LCAT-catalyzed CE formation with phospholipid substrates from fish oil-fed animals was lower (5-50%) than with phospholipid substrates from lard-fed animals. These data show that n-3 fatty acids in phospholipids are not readily utilized by LCAT for formation of CE; rather, LCAT preferentially utilizes linoleic acid for CE formation. The amount of linoleic acid in the sn-2 position of plasma phospholipids is reduced and replaced with n-3 fatty acids in fish oil-fed animals. As a result, LCAT-catalyzed plasma CE formation in vivo is likely reduced in fish oil-fed animals contributing to the decreased cholesteryl ester content and smaller size of LDL particles in the animals of this diet group.  相似文献   

9.
Overexpression of human apolipoprotein A-II (apo A-II) in mice induced postprandial hypertriglyceridemia and marked reduction in plasma HDL concentration and particle size [Boisfer et al. (1999) J. Biol. Chem. 274, 11564-11572]. We presently compared lipoprotein metabolism in three transgenic lines displaying plasma concentrations of human apo A-II ranging from normal to 4 times higher, under ad libitum feeding and after an overnight fast. Fasting dramatically decreased VLDL and lowered circulating human apo A-II in transgenic mice; conversely, plasma HDL levels increased in all genotypes. The apo A-I content of HDL was inversely related to the expression of human apo A-II, probably reflecting displacement of apo A-I by an excess of apo A-II. Thus, the molar ratios of apo A-II/A-I in HDL were significantly higher in fed as compared with fasted animals of the same transgenic line, while endogenous LCAT activity concomitantly decreased. The number and size of HDL particles decreased in direct proportion to the level of human apo A-II expression. Apo A-II was abundantly present in all HDL particles, in contrast to apo A-I mainly present in large ones. Two novel findings were the presence of pre-beta migrating HDL transporting only human apo A-II in the higher-expressing mice and the increase of plasma HDL concentrations by fasting in control and transgenic mice. These findings highlight the reciprocal modifications of VLDL and HDL induced by the feeding-fasting transition and the key role of the molar ratio of apo A-II/A-I as a determinant of HDL particle metabolism and pre-beta HDL formation.  相似文献   

10.
Scavenger receptor BI (SR-BI) is a multi-ligand lipoprotein receptor that mediates selective lipid uptake from HDL, and plays a central role in hepatic HDL metabolism. In this report, we investigated the extent to which SR-BI selective lipid uptake contributes to LDL metabolism. As has been reported for human LDL, mouse SR-BI expressed in transfected cells mediated selective lipid uptake from mouse LDL. However, LDL-cholesteryl oleoyl ester (CE) transfer relative to LDL-CE bound to the cell surface (fractional transfer) was approximately 18-fold lower compared with HDL-CE. Adenoviral vector-mediated SR-BI overexpression in livers of human apoB transgenic mice ( approximately 10-fold increased expression) reduced plasma HDL-cholesterol (HDL-C) and apolipoprotein (apo)A-I concentrations to nearly undetectable levels 3 days after adenovirus infusion. Increased hepatic SR-BI expression resulted in only a modest depletion in LDL-C that was restricted to large LDL particles, and no change in steady-state concentrations of human apoB. Kinetic studies showed a 19% increase in the clearance rate of LDL-CE in mice with increased SR-BI expression, but no change in LDL apolipoprotein clearance. Quantification of hepatic uptake of LDL-CE and LDL-apolipoprotein showed selective uptake of LDL-CE in livers of human apo B transgenic mice. However, such uptake was not significantly increased in mice over-expressing SR-BI. We conclude that SR-BI-mediated selective uptake from LDL plays a minor role in LDL metabolism in vivo.  相似文献   

11.
Administration of alpha-naphthylisothiocyanate (ANIT) to rats induces changes to plasma lipids consistent with cholestasis. We have previously shown (J. Lipid Res. 37 (1996) 1086) that animals treated with ANIT accumulate large amounts of free cholesterol (FC) and phospholipid (PL)-rich cholestatic lipoproteins in the LDL density range by 48 h. This lipid was cleared by 120 h through apparent movement into HDL with concomitant cholesteryl ester (CE) production. It was hypothesised that the clearance was mediated through the movement of the PL and FC into apolipoprotein A-I (apo A-I) containing lipoproteins followed by LCAT esterification to form CE. To test this hypothesis, rats overexpressing various amounts of human apo A-I (TgR[HuAI] rats) were treated with ANIT (100 mg/kg) and the effect of plasma apo A-I concentration on plasma lipids and lipoprotein distribution was examined. In untreated TgR[HuAI] rats, human apo A-I levels were strongly correlated to plasma PL (r(2)=0. 94), FC (r(2)=0.93) and CE (r(2)=0.90), whereas in ANIT-treated TgR[HuAI] rats, human apo A-I levels were most strongly correlated to CE levels (r(2)=0.80) and an increased CE/FC ratio (r(2)=0.62) and the movement of cholestatic lipid in the LDL to HDL. Since LCAT activity was not affected by ANIT treatment, these results demonstrate that the ability of LCAT to esterify the plasma FC present in cholestatic liver disease is limited by in vivo apo A-I activation of the cholestatic lipid and not by the catalytic capacity of LCAT.  相似文献   

12.
Previous studies with the human hepatoblastoma-derived HepG2 cell line in this laboratory have shown that these cells produce high density lipoproteins (HDL) that are similar to HDL isolated from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Experiments were, therefore, performed to determine whether HepG2 HDL could be transformed into plasma-like particles by incubation with LCAT. Concentrated HepG2 lipoproteins (d less than 1.235 g/ml) were incubated with purified LCAT or lipoprotein-deficient plasma (LPDP) for 4, 12, or 24 h at 37 degrees C. HDL isolated from control samples possessed excess phospholipid and unesterified cholesterol relative to plasma HDL and appeared as a mixed population of small spherical (7.8 +/- 1.3 nm) and larger discoidal particles (17.7 +/- 4.9 nm long axis) by electron microscopy. Nondenaturing gradient gel analysis (GGE) of control HDL showed major peaks banding at 7.4, 10.0, 11.1, 12.2, and 14.7 nm. Following 4-h LCAT and 12-h LPDP incubations, HepG2 HDL were mostly spherical by electron microscopy and showed major peaks at 10.1 and 8.1 nm (LCAT) and 10.0 and 8.4 nm (LPDP) by GGE; the particle size distribution was similar to that of plasma HDL. In addition, the chemical composition of HepG2 HDL at these incubation times approximated that of plasma HDL. Molar increases in HDL cholesteryl ester were accompanied by equimolar decreases in phospholipid and unesterified cholesterol. HepG2 low density lipoproteins (LDL) isolated from control samples showed a prominent protein band at 25.6 nm with GGE. Active LPDP or LCAT incubations resulted in the appearance of additional protein bands at 24.6 and 24.1 nm. No morphological changes were observed with electron microscopy. Chemical analysis indicated that the LDL cholesteryl ester formed was insufficient to account for phospholipid lost, suggesting that LCAT phospholipase activity occurred without concomitant cholesterol esterification.  相似文献   

13.
Hine D  Mackness B  Mackness M 《IUBMB life》2012,64(2):157-161
The inhibition of low-density lipoprotein (LDL) oxidation by high-density lipoprotein (HDL) is a major antiatherogenic property of this lipoprotein. This activity is due, in part, to HDL associated proteins. However, whether these proteins interact in the antioxidant activity of HDL is unknown. LDL was incubated with apolipoprotein A1 (apo A1), lecithin:cholesterol acyltransferase (LCAT), and paraoxonase-1 (PON1) alone or in combination, in the presence or absence of HDL under oxidizing conditions. LDL lipid peroxide concentrations were determined. Apo A1, LCAT, and PON1 all inhibit LDL oxidation in the absence of HDL and enhance the ability of HDL to inhibit LDL oxidation. Their effect was additive rather than synergistic; the combination of these proteins significantly enhanced the length of time LDL was protected from oxidation. This seemed to be due to the ability of PON1 to prevent the oxidative inactivation of LCAT. Apo A1, LCAT, and PON1 can all contribute to the antioxidant activity of HDL in vitro. The combination of apo A1, LCAT, and PON1 prolongs the time that HDL can prevent LDL oxidation, due, at least in part, to the prevention LCAT inactivation.  相似文献   

14.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

15.
The role of lecithin:cholesterol acyltransferase (LCAT) in the formation of plasma high density lipoproteins (HDL) was studied in a series of in vitro incubations in which perfusates from isolated African green monkey livers were incubated at 37 degrees C with partially purified LCAT for between 1 and 13 hr. The HDL particles isolated from monkey liver perfusate stored at 4 degrees C and not exposed to added LCAT contained apoA-I and apoE, were deficient in neutral lipids, and were observed by electron microscopy as discoidal particles. Particle sizes, measured as Stokes' diameters by gradient gel electrophoresis (GGE), ranged between 7.8 nm and 15.0 nm. The properties of perfusate HDL were unchanged following incubation at 37 degrees C in the presence of an LCAT inhibitor. However, HDL subfractions derived from incubations at 37 degrees C with active LCAT contained apoA-I as the major apoprotein, appeared round by electron microscopy, and possessed chemical compositions similar to plasma HDL. The HDL isolated from perfusate incubations at 37 degrees C with low amounts of LCAT had a particle size and chemical composition similar to plasma HDL3a. In three of four perfusates incubated with higher levels of LCAT activity, the HDL products consisted of two distinct HDL subpopulations when examined by GGE. The major subpopulation was similar in size and composition to plasma HDL2a, while the minor subpopulation demonstrated the characteristics of plasma HDL2b. The data indicate that the discoidal HDL particles secreted by perfused monkey livers can serve as precursors to three of the major HDL subpopulations observed in plasma.  相似文献   

16.
Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. Compared with normolipidemic LDL, hypercholesterolemic LDL contained ~2-fold more ApoF per LDL particle, whereas ApoF bound to LDL in hypertriglyceridemia plasma was <20% of control. To understand the basis for altered association of ApoF with hyperlipidemic LDL, the physiochemical properties of LDL were modified in vitro by cholesteryl ester transfer protein ± LCAT activities. The time-dependent change in LDL lipid composition, proteome, core and surface lipid packing, LDL surface charge, and LDL size caused by these factors were compared with the ApoF binding capacity of these LDLs. Only LDL particle size correlated with ApoF binding capacity. This positive association between LDL size and ApoF content was confirmed in hyperlipidemic plasmas. Similarly, when in vitro produced and enlarged LDLs with elevated ApoF binding capacity were incubated with LPL to reduce their size, ApoF binding was reduced by 90%. Thus, plasma ApoF levels and the activation status of this ApoF are differentially altered by hypercholesterolemia and hypertriglyceridemia. LDL size is a key determinate of ApoF binding and activation.  相似文献   

17.
Previous studies have indicated that LCAT may play a role in the generation of cholesteryl esters (CE) in plasma apolipoprotein B (apoB) lipoproteins. The purpose of the present study was to examine the quantitative importance of LCAT on apoB lipoprotein CE fatty acid (CEFA) composition. LCAT(-/-) mice were crossed into the LDL receptor (LDLr)(-/-) and apoE(-/-) background to retard the clearance and increase the concentration of apoB lipoprotein in plasma. Plasma free cholesterol was significantly elevated but total and esterified cholesterol concentrations were not significantly affected by removal of functioning LCAT in either the LDLr(-/-) or apoE(-/-) mice consuming a chow diet. However, when functional LCAT was removed from LDLr(-/-) mice, the CEFA ratio (saturated + monounsaturated/polyunsaturated) of plasma LDL increased 7-fold because of a 2-fold increase in saturated and monounsaturated CE, a 40% reduction in cholesteryl linoleate, and a complete absence of long chain (>18 carbon) polyunsaturated CE (20:4, 20:5n-3, and 22:6n-3), from 29.3% to 0%. Removal of functional LCAT from apoE(-/-) mice resulted in only a 1.6-fold increase in the CEFA ratio, due primarily to a complete elimination of long chain CE (7.7% to 0%).Our results demonstrate that LCAT contributes significantly to the CEFA pool of apoB lipoprotein and is the only source of plasma long chain polyunsaturated CE in these mice.  相似文献   

18.
Caco-2 cells and human colonic explants were compared for their ability to esterify lipid classes, synthesize apolipoproteins and assemble lipoproteins. Highly differentiated cells and colonic explants were incubated with [(14)C]oleic acid or [(35)S]methionine for 48 h. Caco-2 cells demonstrated a higher ability to incorporate [(14)C]oleic acid into cellular phospholipids (13-fold, P<0.005), triglycerides (28-fold, P<0.005) and cholesteryl ester (2-fold, P<0. 01). However, their medium/cell lipid ratio was 11 times lower, indicating a limited capacity to export newly synthesized lipids. De novo synthesis of apo B-48 and apo B-100 was markedly increased (7%0 and 240%, respectively), whereas the biogenesis of apo A-I was decreased (60%) in Caco-2 cells. The calculated apo B-48/apo B-100 ratio was substantially diminished (107%), suggesting less efficient mRNA editing in Caco-2 cells. When lipoprotein distribution was examined, it displayed a prevalence of VLDL and LDL, accompanied along with a lower proportion of chylomicron and HDL. In addition, differences in lipoprotein composition were evidenced between colonic explants and Caco-2 cells. Therefore, our findings stress the variance in the magnitude of lipid, apolipoprotein and lipoprotein synthesis and secretion between the two intestinal models. This may be due to various factors, including the origin of Caco-2 cell line, i.e., colon carcinoma.  相似文献   

19.
In rabbits fed a cholesterol-free, semipurified diet containing isolated soy protein, the average total serum cholesterol level was similar to that of rabbits fed a natural ingredient (chow) diet. However, the cholesterol and protein levels in very low density (VLDL) and low density lipoproteins (LDL) tended to increase, while the levels in high density lipoproteins (HDL) were reduced to about half of those on the chow diet, with little change in the cholesterol to protein ratio. Substitution of casein for soy protein in the semipurified diet caused a four- to five-fold increase in total serum cholesterol and a doubling of lipoprotein protein, with an increase of 1.4- to 3.0-fold in the cholesterol to protein ratio of the different lipoprotein fractions. Analysis of the apoproteins (apo) of the plasma lipoproteins indicated that apo B, E, and C all tended to increase in the VLDL and LDL of rabbits fed the soy protein diet compared with those fed chow diet. The levels of each of the apoproteins were increased further by substituting casein for soy protein in the semipurified diet. In this case, apo E showed the greatest relative increase (2.7-fold) in VLDL, while apo B and E were increased to a similar extent (about 4-fold) in LDL. Apo C was approximately doubled in each of these fractions. The apo A content in HDL of rabbits fed the semipurified diets was about half that of rabbits fed chow diet. No marked changes were noted in the apo E or C content of HDL. Separation of isoforms of the soluble apoproteins showed variations between individual animals, but these variations seemed largely unrelated to diet. The results of these studies indicate that semipurified diets produce changes in the serum lipoprotein patterns of rabbits that are only partly due to the protein component of these diets.  相似文献   

20.
In order to study the role of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) in determining the molecular species composition of phosphatidylcholine (PC) and the specificity of lecithin:cholesterol acyltransferase (LCAT) in human plasma, we studied the PC species composition in plasma from abetalipoproteinemic (ABL) and control subjects before and after incubation at 37 degrees C. The ABL plasma contained significantly higher percentages of sn-2-18:1 species (16:0-18:1, 18:0-18:1, and 18:1-18:1) and lower percentages of sn-2-18:2 species (16:0-18:2, 18:0-18:2, and 18:1-18:2) as well as sn-2-20:4 species (16:0-20:4, 18:0-20:4, and 18:1-20:4). Similar abnormalities were found in the PC of ABL erythrocytes, while the PE of the erythrocytes was less affected. The relative contribution of various PC species towards LCAT reaction in ABL plasma was significantly different from that found in normal plasma. Thus, while 16:0-18:2 and 16:0-18:1 contributed, respectively, 43.8% and 15.9% of the total acyl groups used for cholesterol esterification in normal plasma, they contributed, respectively, 21.5% and 37.9% in ABL plasma. The relative contribution of 16:0-20:4 was also significantly lower in ABL plasma (4.7% vs. 9.0% in normal), while that of 16:0-16:0 was higher (6.4% vs. 0.5%). However, the selectivity factors of various species (percent contribution/percent concentration) were not significantly different between ABL and normal plasma, indicating that the substrate specificity of LCAT is not altered in the absence of VLDL and LDL. Incubation of ABL plasma in the presence of normal VLDL or LDL resulted in normalization of its molecular species composition and in the stimulation of its LCAT activity. Addition of LDL, but not VLDL, also resulted in the activation of lysolecithin acyltransferase (LAT) activity. The incorporation of [1-14C]palmitoyl lysoPC into various PC species in the presence of LDL was similar to that observed in normal plasma, with the 16:0-16:0 species having the highest specific activity. These results indicate that the absence of apoB-containing lipoproteins significantly affects the molecular species composition of plasma PC as well as its metabolism by LCAT and LAT reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号