首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
It has been suggested that skeletal muscle O(2) uptake (Vo(2)) kinetics follow a first-order control model. Consistent with that, Vo(2) should show both 1) similar onset kinetics and 2) an on-off symmetry across submaximal work intensities regardless of the metabolic perturbation. To date, consensus on this issue has not been reached in whole body studies due to numerous confounding factors associated with O(2) availability and fiber-type recruitment. To test whether single myocytes demonstrate similar intracellular Po(2) (Pi(O(2))) on- and off-transient kinetics at varying work intensities, we studied Xenopus laevis single myocyte (n = 8) Pi(O(2)) via phosphorescence quenching during two bouts of electrically induced isometric muscle contractions of 200 (low)- and 400 (high)-ms contraction duration (1 contraction every 4 s, 15 min between trials, order randomized). The fall in Pi(O(2)), which is inversely proportional to the net increase in Vo(2), was significantly greater (P < 0.05) during the high (24.1 +/- 3.2 Torr) vs. low (17.4 +/- 1.6 Torr) contraction bout. However, the mean response time (MRT; time to 63% of the overall change) for the fall in Pi(O(2)) from resting baseline to end contractions was not different (high, 77.8 +/- 11.5 vs. low, 76.1 +/- 13.6 s; P > 0.05) between trials. The initial rate of change at contraction onset, defined as DeltaPi(O(2))/MRT, was significantly greater (P < 0.05) in high compared with low. Pi(O(2)) off-transient MRT from the end of the contraction bout to initial baseline was unchanged (high, 83.3 +/- 18.3 vs. low, 80.4 +/- 21.6 s; P > 0.05) between high and low trials. These data revealed that Pi(O(2)) dynamics in frog isolated skeletal myocytes were invariant despite differing contraction durations and, by inference, metabolic demands. Thus these findings demonstrate that mitochondria can respond more rapidly at the initial onset of contractions when challenged with an augmented metabolic stimulus in accordance with an apparent first-order rate law.  相似文献   

2.
In single frog skeletal myocytes, a linear relationship exists between "fatigability" and oxidative capacity. The purpose of this investigation was to study the relationship between the intracellular Po(2) (Pi(O(2))) offset kinetics and fatigability in single Xenopus laevis myocytes to test the hypothesis that Pi(O(2)) offset kinetics would be related linearly with myocyte fatigability and, by inference, oxidative capacity. Individual myocytes (n = 30) isolated from lumbrical muscle were subjected to a 2-min bout of isometric peak tetanic contractions at either 0.25- or 0.33-Hz frequency while Pi(O(2)) was measured continuously via phosphorescence quenching techniques. The mean response time (MRT; time to 63% of the overall response) for Pi(O(2)) recovery from contracting values to resting baseline was calculated. After the initial square-wave constant-frequency contraction trial, each cell performed an incremental contraction protocol [i.e., frequency increase every 2 min from 0.167, 0.25, 0.33, 0.5, 1.0, and 2.0 Hz until peak tension fell below 50% of initial values (TTF)]. TTF values ranged from 3.39 to 10.04 min for the myocytes. The Pi(O(2)) recovery MRT ranged from 26 to 146 s. A significant (P < 0.05), negative relationship (MRT = -12.68TTF + 168.3, r(2) = 0.605) between TTF and Pi(O(2)) recovery MRT existed. These data demonstrate a significant correlation between fatigability and oxidative phosphorylation recovery kinetics consistent with the notion that oxidative capacity determines, in part, the speed with which skeletal muscle can recover energetically to alterations in metabolic demand.  相似文献   

3.
The purpose of this investigation was to study the effects of altered extracellular Po(2) (Pe(O(2))) on the intracellular Po(2) (Pi(O(2))) response to contractions in single skeletal muscle cells. Single myocytes (n = 12) were dissected from lumbrical muscles of adult female Xenopus laevis and injected with 0.5 mM Pd-meso-tetra(4-carboxyphenyl)porphine for assessment of Pi(O(2)) via phosphorescence quenching. At a Pe(O(2)) of approximately 20 (low), approximately 40 (moderate), and approximately 60 (high) Torr, tetanic contractions were induced at a frequency of 0.67 Hz for approximately 2 min with a 5-min recovery between bouts (blocked order design). The Pi(O(2)) response to contractions was characterized by a time delay followed by a monoexponential decline to steady-state (SS) values. The fall in Pi(O(2)) to SS values was significantly greater at each progressively greater Pe(O(2)) (all P < 0.05). The mean response time (time delay + time constant) was significantly faster in the low (35.2 +/- 5.1 s; P < 0.05 vs. high) and moderate (43.3 +/- 6.4 s; P < 0.05 vs. high) compared with high Pe(O(2)) (61.8 +/- 9.4 s) and was correlated positively (r = 0.965) with the net fall in Pi(O(2)). However, the initial rate of change of Pi(O(2)) (calculated as net fall in Pi(O(2))/time constant) was not different (P > 0.05) among Pe(O(2)) trials. These latter data suggest that, over the range of 20-60 Torr, Pe(O(2)) does not play a deterministic role in setting the initial metabolic response to contractions in isolated frog myocytes. Additionally, these results suggest that oxidative phosphorylation in these myoglobin-free myocytes may be compromised by Pe(O(2)) at values nearing 60 Torr.  相似文献   

4.
There is currently some controversy regarding the manner in which skeletal muscle intracellular PO(2) changes with work intensity. Therefore, this study investigated the relationship between intracellular PO(2) and stimulation frequency in intact, isolated, single skeletal muscle fibers. Single, living muscle fibers (n = 7) were microdissected from the lumbrical muscles of Xenopus and injected with the oxygen-sensitive probe palladium-meso-tetra(4-carboxyphenyl)porphine (0.5 mM). Fibers were mounted with platinum clips to a force transducer in a chamber, which was continuously perfused with Ringer solution (pH = 7.0) at a PO(2) of approximately 30 Torr. Fibers were then stimulated sequentially for 3 min, followed by a 3-min rest, at each of five contraction frequencies (0.15, 0.2, 0.25, 0.33, and 0.5 Hz), in a random order, using tetanic contractions. Resting intracellular PO(2) averaged 31.2 +/- 0.9 Torr. During steady-state stimulation, intracellular PO(2) declined to 21.2 +/- 2.3, 17.1 +/- 2.4, 15.3 +/- 1.9, 9.8 +/- 2.0, and 5.8 +/- 1.4 Torr for 0.15, 0.2, 0.25, 0.33, and 0.5-Hz stimulation, respectively. Significant fatigue, as defined by a decrease in force to <50% of the initial force, occurred only at the highest (0.5 Hz) stimulation frequency in five of the cells and at 0.33 Hz in the other two. Regression analysis demonstrated that there was a significant (P < 0.0001, r = 0.82) negative correlation between intracellular PO(2) and contraction frequency in these isolated, single cells. The linear decrease in intracellular PO(2) with stimulation frequency, and thus energy demand, suggests that a fall in intracellular PO(2) correlates with increased oxygen uptake in these single contracting cells.  相似文献   

5.
The speed with which muscle energetic status recovers after exercise is dependent on oxidative capacity and vascular O(2) pressures. Because vascular control differs between muscles composed of fast- vs. slow-twitch fibers, we explored the possibility that microvascular O(2) pressure (Pmv(O(2)); proportional to the O(2) delivery-to-O(2) uptake ratio) would differ during recovery in fast-twitch peroneal (Per: 86% type II) compared with slow-twitch soleus (Sol: 84% type I). Specifically, we hypothesized that, in Per, Pmv(O(2)) would be reduced immediately after contractions and would recover more slowly during the off-transient from contractions compared with Sol. The Per and Sol muscles of six female Sprague-Dawley rats (weight = approximately 220 g) were studied after the cessation of electrical stimulation (120 s; 1 Hz) to compare the recovery profiles of Pmv(O(2)). As hypothesized, Pmv(O(2)) was lower throughout recovery in Per compared with Sol (end contraction: 13.4 +/- 2.2 vs. 20.2 +/- 0.9 Torr; end recovery: 24.0 +/- 2.4 vs. 27.4 +/- 1.2 Torr, Per vs. Sol; P 相似文献   

6.
Previous studies have indicated that frequency of stimulation is a major determinant of glucose transport in contracting muscle. We have now studied whether this is so also when total force development or metabolic rate is kept constant. Incubated soleus muscles were electrically stimulated to perform repeated tetanic contractions at four different frequencies (0.25, 0.5, 1, and 2 Hz) for 10 min. Resting length was adjusted to achieve identical total force development or metabolic rate (glycogen depletion and lactate accumulation). Overall, at constant total force development, glucose transport (2-deoxyglucose uptake) increased with stimulation frequency (P < 0.05; basal: 25 +/- 2, 0.25 Hz: 50 +/- 4, 0.5 Hz: 50 +/- 3, 1 Hz: 81 +/- 5, 2 Hz: 79 +/- 3 nmol. g(-1). 5 min(-1)). However, glucose transport was identical (P > 0.05) at the two lower (0.25 and 0.5 Hz) as well as at the two higher (1 and 2 Hz) frequencies. Glycogen decreased (P < 0.05; basal: 19 +/- 1, 0.25 Hz: 13 +/- 1, 0.5 Hz: 12 +/- 2, 1 Hz: 7 +/- 1, 2 Hz: 7 +/- 1 mmol/kg) and 5'-AMP-activated protein kinase (AMPK) activity increased (P < 0. 05; basal: 1.7 +/- 0.4, 0.25 Hz: 32.4 +/- 7.0, 0.5 Hz: 36.5 +/- 2.1, 1 Hz: 63.4 +/- 8.0, 2 Hz: 67.0 +/- 13.4 pmol. mg(-1). min(-1)) when glucose transport increased. Experiments with constant metabolic rate were carried out in soleus, flexor digitorum brevis, and epitrochlearis muscles. In all muscles, glucose transport was identical at 0.5 and 2 Hz (P > 0.05); also, AMPK activity did not increase with stimulation frequency. In conclusion, muscle glucose transport increases with stimulation frequency but only in the face of energy depletion and increase in AMPK activity. This indicates that contraction-induced glucose transport is elicited by metabolic demands rather than by events occurring early during the excitation-contraction coupling.  相似文献   

7.
This study investigated the effects of acute creatine kinase (CK) inhibition (CKi) on contractile performance, cytosolic Ca2+ concentration ([Ca2+]c), and intracellular PO2 (PIO2) in Xenopus laevis isolated myocytes during a 2-min bout of isometric tetanic contractions (0.33-Hz frequency). Peak tension was similar between trials during the first contraction but was significantly (P < 0.05) attenuated for all subsequent contractions in CKi vs. control (Con). The fall in PIO2 (DeltaPIO2) from resting values was significantly greater in Con (26.0 +/- 2.2 Torr) compared with CKi (17.8 +/- 1.8 Torr). However, the ratios of Con to CKi end-peak tension (1.53 +/- 0.11) and DeltaPO2 (1.49 +/- 0.11) were similar, suggesting an unaltered aerobic cost of contractions. Additionally, the mean response time (MRT) of DeltaPIO2was significantly faster in CKi vs. Con during both the onset (31.8 +/- 5.5 vs. 49.3 +/- 5.7 s; P < 0.05) and cessation (21.2 +/- 4.1 vs. 68.0 +/- 3.2 s; P < 0.001) of contractions. These data demonstrate that initial phosphocreatine hydrolysis in single skeletal muscle fibers is crucial for maintenance of sarcoplasmic reticulum Ca2+ release and peak tension during a bout of repetitive tetanic contractions. Furthermore, as PIO2 fell more rapidly at contraction onset in CKi compared with Con, these data suggest that CK activity temporally buffers the initial ATP-to-ADP concentration ratio at the transition to an augmented energetic demand, thereby slowing the initial mitochondrial activation by mitigating the energetic control signal (i.e., ADP concentration, phosphorylation potential, etc.) between sites of ATP supply and demand.  相似文献   

8.
It remains uncertain whether the delayed onset of mitochondrial respiration on initiation of muscle contractions is related to O(2) availability. The purpose of this research was to measure the kinetics of the fall in intracellular PO(2) at the onset of a contractile work period in rested and previously worked single skeletal muscle fibers. Intact single skeletal muscle fibers (n = 11) from Xenopus laevis were dissected from the lumbrical muscle, injected with an O(2)-sensitive probe, mounted in a glass chamber, and perfused with Ringer solution (PO(2) = 32 +/- 4 Torr and pH = 7.0) at 20 degrees C. Intracellular PO(2) was measured in each fiber during a protocol consisting sequentially of 1-min rest; 3 min of tetanic contractions (1 contraction/2 s); 5-min rest; and, finally, a second 3-min contractile period identical to the first. Maximal force development and the fall in force (to 83 +/- 2 vs. 86 +/- 3% of maximal force development) in contractile periods 1 and 2, respectively, were not significantly different. The time delay (time before intracellular PO(2) began to decrease after the onset of contractions) was significantly greater (P < 0.01) in the first contractile period (13 +/- 3 s) compared with the second (5 +/- 2 s), as was the time to reach 50% of the contractile steady-state intracellular PO(2) (28 +/- 5 vs. 18 +/- 4 s, respectively). In Xenopus single skeletal muscle fibers, 1) the lengthy response time for the fall in intracellular PO(2) at the onset of contractions suggests that intracellular factors other than O(2) availability determine the on-kinetics of oxidative phosphorylation and 2) a prior contractile period results in more rapid on-kinetics.  相似文献   

9.
mM DCA, whereas the second group [control (Con); n = 10] was incubated for 30 min in Ringer solution only. After incubation, fibers were electrically stimulated to elicit tetanic contractions (0.5 Hz) for 2 min during which PiO2 was monitored. PiO2 before contractions began was 32.0 +/- 1.8 and 29.0 +/- 1.8 Torr for DCA and Con, respectively, and fell to 6.0 +/- 1.3 and 8.8 +/- 2.4 Torr (no significant difference), respectively, after steady state was reached. The kinetics of the fall, determined by both the time delay (from the start of contractions to the initial decrease in PiO2) and the tau (63% of the change to a steady state in PiO2), were calculated. In DCA cells, the tau was significantly (P < 0.05) faster than Con (22.1 +/- 3.6 vs. 39.7 +/- 5.8 s). In contrast, the time delay was not significantly (P > 0.45) different between the two groups (11.4 +/- 1.7 vs. 12.6 +/- 2.3 s, respectively). The amount of fatigue, reflected by a decrease in force production from initial, was not significantly different between groups. These data suggest that by stimulating pyruvate dehydrogenase with DCA in isolated single skeletal muscle cells, the faster fall in PiO2 is indicative of oxidative metabolism being more rapidly activated. This is the first evidence that oxygen uptake at the onset of contractions may be altered by DCA during moderate- to high-intensity contractile activity.  相似文献   

10.
The purpose of this study was to examine the development of fatigue in isolated, single skeletal muscle fibers when O2 availability was reduced but not to levels considered rate limiting to mitochondrial respiration. Tetanic force was measured in single living muscle fibers (n = 6) from Xenopus laevis while being stimulated at increasing contraction rates (0.25, 0.33, 0.5, and 1 Hz) in a sequential manner, with each stimulation frequency lasting 2 min. Muscle fatigue (determined as 75% of initial maximum force) was measured during three separate work bouts (with 45 min of rest between) as the perfusate PO2 was switched between values of 30 +/- 1.9, 76 +/- 3.0, or 159 Torr in a blocked-order design. No significant differences were found in the initial peak tensions between the high-, intermediate-, and low-PO2 treatments (323 +/- 22, 298 +/- 27, and 331 +/- 24 kPa, respectively). The time to fatigue was reached significantly sooner (P < 0.05) during the 30-Torr treatment (233 +/- 39 s) compared with the 76- (385 +/- 62 s) or 159-Torr (416 +/- 65 s) treatments. The calculated critical extracellular PO2 necessary to develop an anoxic core within these fibers was 13 +/- 1 Torr, indicating that the extracellular PO2 of 30 Torr should not have been rate limiting to mitochondrial respiration. The magnitude of an unstirred layer (243 +/- 64 micron) or an intracellular O2 diffusion coefficient (0.45 +/- 0.04 x 10(-5) cm2/s) necessary to develop an anoxic core under the conditions of the study was unlikely. The earlier initiation of fatigue during the lowest extracellular PO2 condition, at physiologically high intracellular PO2 levels, suggests that muscle performance may be O2 dependent even when mitochondrial respiration is not necessarily compromised.  相似文献   

11.
Aged rats exhibit a decreased muscle microvascular O(2) partial pressure (Pmv(O(2))) at rest and during contractions compared with young rats. Age-related reductions in nitric oxide bioavailability due, in part, to elevated reactive O(2) species, constrain muscle blood flow (Qm). Antioxidants may restore nitric oxide bioavailability, Qm, and ameliorate the reduced Pmv(O(2)). We tested the hypothesis that antioxidants would elevate Qm and, therefore, Pmv(O(2)) in aged rats. Spinotrapezius muscle Pmv(O(2)) and Qm were measured, and oxygen consumption (Vm(O(2))) was estimated in anesthetized male Fisher 344 x Brown Norway hybrid rats at rest and during 1-Hz contractions, before and after antioxidant intravenous infusion (76 mg/kg vitamin C and 52 mg/kg tempol). Before infusion, contractions evoked a biphasic Pmv(O(2)) that fell from 30.6 +/- 0.9 Torr to a nadir of 16.8 +/- 1.2 Torr with an "undershoot" of 2.8 +/- 0.7 Torr below the subsequent steady-state (19.7 +/- 1.2 Torr). The principal effect of antioxidants was to elevate baseline Pmv(O(2)) from 30.6 +/- 0.9 to 35.7 +/- 0.8 Torr (P < 0.05) and reduce or abolish the undershoot (P < 0.05). Antioxidants reduced Qm and Vm(O(2)) during contractions (P < 0.05), while decreasing force production 16.5% (P < 0.05) and elevating the force production-to-Vm(O(2)) ratio (0.92 +/- 0.03 to 1.06 +/- 0.6, P < 0.05). Thus antioxidants increased Pmv(O(2)) by altering the balance between muscle O(2) delivery and Vm(O(2)) at rest and during contractions. It is likely that this effect arose from antioxidants reducing myocyte redox below the level optimal for contractile performance and directly (decreased tension) or indirectly (altered balance of vasoactive mediators) influencing O(2) delivery and Vm(O(2)).  相似文献   

12.
The relative amplitudes and rates of increase of muscle blood flow (and O(2) delivery) and O(2) uptake responses determine the O(2) pressure within the muscle microvasculature (Pm(O(2))) across the rest-to-contraction transition. Skeletal muscle function is a primary determinant of pulmonary O(2) uptake kinetics; however, it has never been determined whether the dynamics of muscle Pm(O(2)) are faster in a highly oxidative muscle [e.g., diaphragm (Dia), citrate synthase activity of 39 micromol. min(-1). g(-1)] compared with less oxidative muscles [e.g., spinotrapezius (Spino), citrate synthase activity of 14 micromol. min(-1). g(-1), male Sprague-Dawley rats; Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996]. Phosphorescence quenching techniques (porphyrin dendrimer, R2) were used to determine Pm(O(2)) across the transition to electrically stimulated contractions (1 Hz) within the rat Dia. After a delay of 10.4 +/- 1.3 (SE) s at the beginning of Dia contractions, Pm(O(2)) decreased close to monoexponentially from 42 +/- 2 to 27 +/- 3 Torr (P < 0.05) with an extremely fast time constant of 7.1 +/- 1.1 s. Thus Dia Pm(O(2)) decreased with significantly (P < 0.05) faster kinetics than reported previously for the Spino muscle (delay, 19.2 +/- 2.8 s; time constant Pm(O(2)), 21.7 +/- 2.1 s; Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC, Respir Physiol 126: 53-63, 2001). With the use of two specialized muscles with similar fiber-type composition but widely disparate oxidative capacities (Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996), these data demonstrate that Pm(O(2)) kinetics are significantly faster in the highly oxidative Dia compared with the low-oxidative Spino muscle and that this effect is not dependent on muscle fiber-type composition.  相似文献   

13.
The purpose of this study was to test the hypothesis that increasing muscle contraction frequency, which alters the duty cycle and metabolic rate, would increase the contribution of the contractile phase to mean venous blood flow in isolated skeletal muscle during rhythmic contractions. Canine gastrocnemius muscle (n = 5) was isolated, and 3-min stimulation periods of isometric, tetanic contractions were elicited sequentially at rates of 0.25, 0.33, and 0.5 contractions/s. The O2 uptake, tension-time integral, and mean venous blood flow increased significantly (P < 0.05) with each contraction frequency. Venous blood flow during both the contractile (106 +/- 6, 139 +/- 8, and 145 +/- 8 ml x 100 g-1 x min-1) and noncontractile phases (64 +/- 3, 78 +/- 4, and 91 +/- 5 ml x 100 g-1 x min-1) increased with contraction frequency. Although developed force and duration of the contractile phase were never significantly different for a single contraction during the three contraction frequencies, the amount of blood expelled from the muscle during an individual contraction increased significantly with contraction frequency (0.24 +/- 0.03, 0.32 +/- 0.02, and 0.36 +/- 0.03 ml x N-1 x min-1, respectively). This increased blood expulsion per contraction, coupled with the decreased time in the noncontractile phase as contraction frequency increased, resulted in the contractile phase contribution to mean venous blood flow becoming significantly greater (21 +/- 4, 30 +/- 4, and 38 +/- 6%) as contraction frequency increased. These results demonstrate that the percent contribution of the muscle contractile phase to mean venous blood flow becomes significantly greater as contraction frequency (and thereby duty cycle and metabolic rate) increases and that this is in part due to increased blood expulsion per contraction.  相似文献   

14.
The microvascular partial pressure of oxygen (Pmv(o(2))) kinetics following the onset of exercise reflects the relationship between muscle O(2) delivery and uptake (Vo(2)). Although AMP-activated protein kinase (AMPK) is known as a regulator of mitochondria and nitric oxide metabolism, it is unclear whether the dynamic balance of O(2) delivery and Vo(2) at exercise onset is dependent on AMPK activation level. We used transgenic mice with muscle-specific AMPK dominant-negative (AMPK-DN) to investigate a role for skeletal muscle AMPK on Pmv(o(2)) kinetics following onset of muscle contractions. Phosphorescence quenching techniques were used to measure Pmv(o(2)) at rest and across the transition to twitch (1 Hz) and tetanic (100 Hz, 3-5 V, 4-ms pulse duration, stimulus duration of 100 ms every 1 s for 1 min) contractions in gastrocnemius muscles (each group n = 6) of AMPK-DN mice and wild-type littermates (WT) under isoflurane anesthesia with 100% inspired O(2) to avoid hypoxemia. Baseline Pmv(o(2)) before contractions was not different between groups (P > 0.05). Both muscle contraction conditions exhibited a delay followed by an exponential decrease in Pmv(o(2)). However, compared with WT, AMPK-DN demonstrated 1) prolongation of the time delay before Pmv(o(2)) began to decline (1 Hz: WT, 3.2 ± 0.5 s; AMPK-DN, 6.5 ± 0.4 s; 100 Hz: WT, 4.4 ± 1.0 s; AMPK-DN, 6.5 ± 1.4 s; P < 0.05), 2) a faster response time (i.e., time constant; 1 Hz: WT, 19.4 ± 3.9 s; AMPK-DN, 12.4 ± 2.6 s; 100 Hz: WT, 15.1 ± 2.2 s; AMPK-DN, 9.0 ± 1.7 s; P < 0.05). These findings are consistent with the presence of substantial mitochondrial and microvascular dysfunction in AMPK-DN mice, which likely slows O(2) consumption kinetics (i.e., oxidative phosphorylation response) and impairs the hyperemic response at the onset of contractions thereby sowing the seeds for exercise intolerance.  相似文献   

15.
Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies < or = 20 Hz, and it was maximal at frequencies > or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.  相似文献   

16.
The purpose of this research was to develop a technique for rapid measurement of O(2) uptake (Vo(2)) kinetics in single isolated skeletal muscle cells. Previous attempts to measure single cell Vo(2) have utilized polarographic-style electrodes, thereby mandating large fluid volumes and relatively poor sensitivity. Thus our laboratory has developed an approximately 100-microl, well-stirred chamber for the measurement of Vo(2) in isolated Xenopus laevis myocytes using a phosphorescence quenching technique [Ringer solution with 0.05 mM Pd-meso-tetra(4-carboxyphenyl)porphine] to monitor the fall in extracellular Po(2) (which is proportional to cellular Vo(2) within the sealed chamber). Vo(2) in single living myocytes dissected from Xenopus lumbrical muscles was measured from rest across a bout of repetitive tetanic contractions (0.33 Hz) and in response to a ramp protocol utilizing an increasing contraction frequency. In response to the square-wave contraction bout, the increase in Vo(2) to steady state (SS) was 16.7 +/- 1.3 ml x 100 g(-1) x min(-1) (range 13.0-21.9 ml x 100 g(-1) x min(-1); n = 6). The rise in Vo(2) at contractions onset (n = 6) was fit with a time delay (2.1 +/- 1.2 s, range 0.0-7.7 s) plus monoexponential rise to SS (time constant = 9.4 +/- 1.5 s, range 5.2-14.9 s). Furthermore, in two additional myocytes, Vo(2) increased progressively as contraction frequency increased (ramp protocol). This technique for measuring Vo(2) in isolated, single skeletal myocytes represents a novel and powerful investigative tool for gaining mechanistic insight into mitochondrial function and Vo(2) dynamics without potential complications of the circulation and other myocytes.  相似文献   

17.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

18.
Spike frequency was recorded in the nerve of the isolated superfused first gill arch of the bullfrog larva, Rana catesbeiana and the response to different superfusate PO2 was evaluated. In the metamorphic tadpole, spike frequency increased significantly when the superfusate PO2 was decreased (mean +/- SEM): 8.5 +/- 1.6 Hz at 650 Torr, 11.7 +/- 1.9 Hz at 140 Torr, 13.3 +/- 1.8 Hz at 65 Torr, 14.8 +/- 2.4 Hz at 0 Torr (ANOVA, p = 0.0002). The O2 sensitive chemoreceptor stimulants NaCN and almitrine also increased the spike frequency. This study demonstrates the presence of O2 sensitive chemoreceptors in the first gill arch of the tadpole.  相似文献   

19.
Congestive heart failure (CHF) is most prevalent in aged individuals and elicits a spectrum of cardiovascular and muscular perturbations that impairs the ability to deliver (Qo(2)) and utilize (Vo(2)) oxygen in skeletal muscle. Whether aging potentiates the CHF-induced alterations in the Qo(2)-to-Vo(2) relationship [which determines microvascular Po(2) (Pmv(O(2)))] in resting and contracting skeletal muscle is unclear. We tested the hypothesis that old rats with CHF would demonstrate a greater impairment of skeletal muscle Pmv(O(2)) than observed in young rats with CHF. Phosphorescence quenching was utilized to measure spinotrapezius Pmv(O(2)) at rest and across the rest-to-contractions (1-Hz, 4-6 V) transition in young (Y) and old (O) male Fischer 344 Brown-Norway rats with CHF induced by myocardial infarction (mean left ventricular end-diastolic pressure >20 mmHg for Y(CHF) and O(CHF)). In CHF muscle, aging significantly reduced resting Pmv(O(2)) (32.3 +/- 3.4 Torr for Y(CHF) and 21.3 +/- 3.3 Torr for O(CHF); P < 0.05) and in both Y(CHF) and O(CHF) compared with their aged-matched counterparts, CHF reduced the rate of the Pmv(O(2)) fall at the onset of contractions. Moreover, across the on-transient and in the subsequent steady state, Pmv(O(2)) values in O(CHF) vs. Y(CHF) were substantially lower (for steady-state, 20.4 +/- 1.7 Torr for Y(CHF) and 16.4 +/- 2.0 Torr for O(CHF); P < 0.05). At rest and during contractions in CHF, the pressure driving blood-muscle O(2) diffusion (Pmv(O(2))) is substantially decreased in old animals. This finding suggests that muscle dysfunction and exercise intolerance in aged CHF patients might be due, in part, to the failure to maintain a sufficiently high Pmv(O(2)) to facilitate blood-muscle O(2) exchange and support mitochondrial ATP production.  相似文献   

20.
Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号