共查询到20条相似文献,搜索用时 15 毫秒
1.
Osawa Y Yim PD Xu D Panettieri RA Emala CW 《American journal of physiology. Lung cellular and molecular physiology》2007,292(6):L1414-L1421
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase. 相似文献
2.
Mizuta K Zhang Y Xu D Masaki E Panettieri RA Emala CW 《American journal of physiology. Lung cellular and molecular physiology》2012,302(3):L316-L324
Dopamine receptors are G protein-coupled receptors that are divided into two subgroups, "D(1)-like" receptors (D(1) and D(5)) that couple to the G(s) protein and "D(2)-like" receptors (D(2), D(3), and D(4)) that couple to G(i). Although inhaled dopamine has been reported to induce bronchodilation in patients with asthma, functional expression of dopamine receptor subtypes has never been described on airway smooth muscle (ASM) cells. Acute activation of G(i)-coupled receptors inhibits adenylyl cyclase activity and cAMP synthesis, which classically impairs ASM relaxation. In contrast, chronic activation of G(i)-coupled receptors produces a paradoxical enhancement of adenylyl cyclase activity referred to as heterologous sensitization. We questioned whether the dopamine D(2)-like receptor is expressed on ASM, whether it exhibits classical G(i)-coupling, and whether it modulates ASM function. We detected the mRNA encoding the dopamine D(2) receptor in total RNA isolated from native human ASM and from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the dopamine D(2) receptor protein in both native human and guinea pig ASM and cultured HASM cells. The dopamine D(2) receptor protein was immunohistochemically localized to both human and guinea pig ASM. Acute activation of the dopamine D(2) receptor by quinpirole inhibited forskolin-stimulated adenylyl cyclase activity in HASM cells, which was blocked by the dopamine D(2) receptor antagonist L-741626. In contrast, the chronic pretreatment (1 h) with quinpirole potentiated forskolin-stimulated adenylyl cyclase activity, which was inhibited by L-741626, the phospholipase C inhibitor U73122, or the protein kinase C inhibitor GF109203X. Quinpirole also stimulated inositol phosphate synthesis, which was inhibited by L-741626 or U73122. Chronic pretreatment (1 h) of the guinea pig tracheal rings with quinpirole significantly potentiated forskolin-induced airway relaxation, which was inhibited by L-741626. These results demonstrate that functional dopamine D(2) receptors are expressed on ASM and could be a novel therapeutic target for the relaxation of ASM. 相似文献
3.
Xu D Isaacs C Hall IP Emala CW 《American journal of physiology. Lung cellular and molecular physiology》2001,281(4):L832-L843
Adenylyl cyclases are a nine-member family of differentially regulated enzymes responsible for the synthesis of cAMP. cAMP is an important second messenger that contributes to the regulation of airway smooth muscle tone. However, little is known regarding the expression and regulation of adenylyl cyclase isoforms in airway smooth muscle cells. Nondegenerate specific primers were designed for all nine known isoforms of human adenylyl cyclase. RT-PCR experiments were performed using total RNA extracted from whole human brain (positive control), whole rat brain (negative control), whole human trachea, human airway smooth muscle, and primary cultures of human airway smooth muscle cells. Seven of the nine known isoforms of adenylyl cyclase (isoforms I, III-VII, and IX) were expressed at the mRNA level in both human airway smooth muscle and primary cultures of human airway smooth muscle cells. Immunoblot and adenylyl cyclase functional assay indicated that isoform V is likely among the functionally predominant isoforms of adenylyl cyclase in human airway smooth muscle. These results suggest that multiple isoforms of adenylyl cyclase enzymes are coexpressed in human airway smooth muscle cells and that isoform V is among the functionally important isoforms. 相似文献
4.
We have recently shown that the nitric oxide (NO) donor, SNAP, decreased the expression of Giα proteins and associated functions
in vascular smooth muscle cells. Because NO stimulates soluble guanylyl cyclase and increases the levels of guanosine 3′,5′-cyclic
monophosphate (cGMP), the present studies were undertaken to investigate whether cGMP can also modulate the expression of
Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMCs) and primary cultured cells
from aorta of Sprague Dawley rats were used for these studies. The cells were treated with 8-bromoguanosine 3′,5′-cyclic monophosphate
(8Br-cGMP) for 24 h and the expression of Giα proteins was determined by immunobloting techniques. Adenylyl cyclase activity
was determined by measuring [32P]cAMP formation for [α-32P]ATP. Treatment of cells with 8-Br-cGMP (0.5 mM) decreased the expression of Giα-2 and Giα-3 by about 30–45%, which was restored towards control levels by KT5823, an inhibitor
of protein kinase G. On the other and hand, the levels of Gsα protein were not altered by this treatment. The decreased expression
of Giα proteins by 8Br-cGMP treatment was reflected in decreased Gi functions. For example, the inhibition of forskolin (FSK)-stimulated
adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent Gi functions) was significantly decreased by
8Br-cGMP treatment. In addition, exposure of the cells to 8Br-cGMP also resulted in the attenuation of angiotensin (Ang) II-
and C-ANP4–23 (a ring-deleted analog of atrial natriuretic peptide [ANP]-mediated inhibition of adenylyl cyclase activity (receptor-dependent
functions of Gi). On the other hand, Gsα-mediated stimulations of adenylyl cyclase by GTPγS, isoproterenol and FSK were significantly
augmented in 8Br-cGMP-treated cells. These results indicated the 8Br-cGMP decreased the expression of Giα proteins and associated
functions in VSMCs. From these studies, it can be suggested that 8Br-cGMP-induced decreased levels of Gi proteins and resultant
increased levels of cAMP may be an additional mechanism through which cGMP regulates vascular tone and thereby blood pressure. 相似文献
5.
Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity 总被引:4,自引:0,他引:4
To determine the intracellular signal transduction pathway responsible for the development of tolerance/dependence, the ability of Gzalpha to substitute for pertussis toxin (PTX)-sensitive G proteins in mediating adenylyl cyclase (AC) supersensitivity was examined in the presence of defined AC isoforms. In transiently micro-opioid receptor (OR) transfected COS-7 cells (endogenous inhibitory G proteins: Gialpha2, Gialpha3 and Gzalpha), neither acute (1 micro mol/L) nor chronic morphine treatment (1 micromol/L; 18 h) influenced intracellular cAMP production. Coexpression of the micro -OR together with AC type V and VI fully restored the ability of morphine to acutely inhibit cAMP generation. Chronic morphine treatment further resulted in the development of tolerance/dependence, as assessed by desensitization of the acute inhibitory opioid effect (tolerance) as well as the induction of AC supersensitivity after drug withdrawal (dependence). Specific direction of micro -OR signalling via Gzalpha by both PTX treatment and Gzalpha over-expression had no effect on chronic morphine regulation of AC type V, but completely abolished the development of tolerance/dependence with AC type VI. Similar results were obtained in stably micro -OR-expressing HEK293 cells transiently cotransfected with Gzalpha and either AC type V or VI. Coprecipitation studies further verified that Gzalpha specifically binds to AC type V but not type VI. Taken together, these results demonstrate that in principle each of the OR-activated G proteins per se is able to mediate AC supersensitivity. However, they also indicate that it is the molecular nature of AC isoform that selects and determines the OR-activated G protein mediating tolerance/dependence. 相似文献
6.
7.
Debra J Turner Peter B Noble Matthew P Lucas Howard W Mitchell 《Journal of applied physiology》2002,93(4):1296-1300
Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs. 相似文献
8.
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure. 相似文献
9.
Sanjeev Kumar Avinash Appukuttan Abdelouahid Maghnouj Stephan Hahn H. Peter Reusch Yury Ladilov 《Apoptosis : an international journal on programmed cell death》2014,19(7):1069-1079
Apoptosis of vascular smooth muscle cells (VSMC) significantly contributes to the instability of advanced atherosclerotic plaques. Oxygen radicals are an important cause for VSMC death. However, the precise mechanism of oxidative stress-induced VSMC apoptosis is still poorly understood. Here, we aimed to analyse the role of soluble adenylyl cylclase (sAC). VSMC derived from rat aorta were treated with either H2O2 (300 µmol/L) or DMNQ (30 µmol/L) for 6 h. Oxidative stress-induced apoptosis was prevented either by treatment with 30 µmol/L KH7 (a specific inhibitor of sAC) or by stable sAC-knockdown (shRNA-transfection). A similar effect was found after inhibition of protein kinase A (PKA). Suppression of the sAC/PKA-axis led to a significant increase in phosphorylation of the p38 mitogen-activated protein kinase under oxidative stress accompanied by a p38-dependent phosphorylation/inactivation of the pro-apoptotic Bcl-2-family protein Bad. Pharmacological inhibition of p38 reversed these effects of sAC knockdown on apoptosis and Bad phosphorylation, suggesting p38 as a link between sAC and apoptosis. Analysis of the protein phosphatases 1 and 2A activities revealed an activation of phosphatase 1, but not phosphatase 2A, under oxidative stress in a sAC/PKA-dependent manner and its role in controlling the p38 phosphorylation. Inhibition of protein phosphatase 1, but not 2A, prevented the pro-apoptotic effect of oxidative stress. In conclusion, sAC/PKA-signaling plays a key role in the oxidative stress-induced apoptosis of VSMC. The cellular mechanism consists of the sAC-promoted and protein phosphatase 1-mediated suppression of p38 phosphorylation resulting to activation of the mitochondrial pathway of apoptosis. 相似文献
10.
Bassil M Li Y Anand-Srivastava MB 《American journal of physiology. Heart and circulatory physiology》2008,294(2):H775-H784
We previously showed that S-nitroso-N-acetylpenicillamine, a nitric oxide donor, decreased the levels and functions of G(i)alpha proteins by formation of peroxynitrite (ONOO(-)) in vascular smooth muscle cells (VSMC). The present studies were undertaken to investigate whether ONOO(-) can modulate the expression of G(i)alpha protein and associated adenylyl cyclase signaling in VSMC. Treatment of A-10 and aortic VSMC with ONOO(-) for 24 h decreased the expression of G(i)alpha-2 and G(i)alpha-3, but not G(s)alpha, protein in a concentration-dependent manner; expression was restored toward control levels by (111)Mn-tetralis(benzoic acid porphyrin) and uric acid, but not by 1H[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one (ODQ) and KT-5823. cGMP levels were increased by approximately 50% and 150% by 0.1 and 0.5 mM ONOO(-), respectively, and attenuated toward control levels by ODQ. In addition, 0.5 mM ONOO(-) attenuated the inhibition of adenylyl cyclase by ANG II and C-type atrial natriuretic peptide (C-ANP(4-23)), as well as the inhibition of forskolin-stimulated adenylyl cyclase activity by GTPgammaS, whereas, the G(s)-mediated stimulations were augmented. In addition, 0.5 mM ONOO(-) decreased phosphorylation of ERK1/2 and p38 MAP kinase and enhanced JNK phosphorylation but did not affect AKT1/3 phosphorylation. These results suggest that ONOO(-) decreased the expression of G(i) proteins and associated functions in VSMC through a cGMP-independent mechanism and may involve the MAP kinase signaling pathway. 相似文献
11.
T J Torphy W B Freese G A Rinard L L Brunton S E Mayer 《The Journal of biological chemistry》1982,257(19):11609-11616
Because of the potential importance of cyclic nucleotide-dependent protein kinases in the regulation of airway smooth muscle tone, we have examined some of the characteristics of these enzymes in the soluble fraction of canine trachealis homogenates. In the absence of added cAMP, the heat-stable cAMP-dependent protein kinase inhibitor (PKI) abolished only a half of the 32P incorporation into mixed histones. The remaining activity appeared to be contributed by a cyclic nucleotide-independent enzyme. Phosphotransferase activity was enhanced 5-fold by 5 microM cAMP but only 70% of the cAMP-stimulated activity could be inhibited by PKI. The sensitivity of the cyclic nucleotide-dependent, PKI-resistant enzyme to cAMP, cGMP, and Mg2+ indicated that it was cGMP-dependent protein kinase. Because of the large amount of cyclic nucleotide-independent activity, and the ability of cAMP to activate cGMP-dependent protein kinase, the traditional "-cAMP/+cAMP" ratio did not provide an accurate assessment of the in vivo activation state of cAMP-dependent protein kinase. However, a modified assay was developed which allowed the precise measurement of cAMP-dependent, cGMP-dependent, and cyclic nucleotide-independent protein kinase activities. Using this new method, the cAMP-dependent protein kinase activity ratio of 0.239 in untreated trachealis strips was increased to 0.355 and 0.386 by prior exposure of the intact tissue to the smooth muscle relaxants isoproterenol and prostaglandin E2, respectively. The results of this study are consistent with the proposed role of cAMP-dependent protein kinase in the regulation of smooth muscle contractile function. 相似文献
12.
Yoshimura H Jones KA Perkins WJ Kai T Warner DO 《American journal of physiology. Lung cellular and molecular physiology》2001,281(3):L631-L638
We determined whether activation of G proteins can affect the force developed for a given intracellular Ca(2+) concentration ([Ca(2+)]; i.e., the Ca(2+) sensitivity) by mechanisms in addition to changes in regulatory myosin light chain (rMLC) phosphorylation. Responses in alpha-toxin-permeabilized canine tracheal smooth muscle were determined with Ca(2+) alone or in the presence of ACh, endothelin-1 (ET-1), or aluminum fluoride (AlF; acute or 1-h exposure). Acute exposure to each compound increased Ca(2+) sensitivity without changing the response to high [Ca(2+)] (maximal force). However, chronic exposure to AlF, but not to chronic ACh or ET-1, increased maximal force by increasing the force produced for a given rMLC phosphorylation. Studies employing thiophosphorylation of rMLC showed that the increase in force produced by chronic AlF exposure required Ca(2+) during activation to be manifest. Unlike the acute response to receptor agonists, which is mediated solely by increases in rMLC phosphorylation, chronic direct activation of G proteins further increases Ca(2+) sensitivity in airways by additional mechanisms that are independent of rMLC phosphorylation. 相似文献
13.
Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle
White TA Walseth TF Kannan MS 《American journal of physiology. Lung cellular and molecular physiology》2002,283(5):L1065-L1071
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols. 相似文献
14.
Joubert P Lajoie-Kadoch S Labonté I Gounni AS Maghni K Wellemans V Chakir J Laviolette M Hamid Q Lamkhioued B 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(4):2702-2708
Asthma is characterized by an increase in airway smooth muscle mass and a decreased distance between the smooth muscle layer and the epithelium. Furthermore, there is evidence to indicate that airway smooth muscle cells (ASMC) express a wide variety of receptors involved in the immune response. The aims of this study were to examine the expression of CCR3 on ASMC, to compare this expression between asthmatic and nonasthmatic subjects, and to determine the implications of CCR3 expression in the migration of ASMC. We first demonstrated that ASMC constitutively express CCR3 at both mRNA and protein levels. Interestingly, TNF-alpha increases ASMC surface expression of CCR3 from 33 to 74%. Furthermore, using FACS analysis, we found that ASMC CCR3 is expressed to a greater degree in asthmatic vs control subjects (95 vs 75%). Functionality of the receptor was demonstrated by calcium assay; the addition of CCR3 ligand eotaxin to ASMC resulted in an increase in intracellular calcium production. Interestingly, ASMC was seen to demonstrate a positive chemotactic response to eotaxin. Indeed, ASMC significantly migrated toward 100 ng/ml eotaxin (2.2-fold increase, compared with control). In conclusion, the expression of CCR3 by ASMC is increased in asthmatics, and our data show that a CCR3 ligand such as eotaxin induces migration of ASMC in vitro. These results may suggest that eotaxin could be involved in the increased smooth muscle mass observed in asthmatics through the activation of CCR3. 相似文献
15.
Conventional homogenizing methods produced membrane preparations of canine trachealis airway smooth muscle which contained adenylate cyclase activity that was stimulated by fluoride but not by isoproterenol. We have devised methods using collagenase digestion of minced trachealis which destroy most of the tough connective tissues but leave dissociated canine trachealis cells in suspension. Gentle homogenization of these cells permitted preparation of a particulate fraction containing adenylate cyclase that was readily stimulated by beta-adrenergic agonist of prostaglandin E2. Isoproterenol stimulation was 2.34 +/- 0.58 (S.E.) times basal and 122 +/- 25% of the stimulation induced by NaF. The beta-adrenergic blocking agent propranolol prevented isoproterenol-induced stimulation of the cyclase but had no effect on prostaglandin E2 stimulation. Catecholamine order of potency was isoproterenol greater than epinephrine greater than norepinephrine. These methods enable demonstration of stimulatory effects of hormones in broken cell preparations of airway smooth muscle that are comparable to those when hormone-stimulated cyclic AMP formation is measured in intact muscle strips. 相似文献
16.
Mechanisms involved in desensitization of particulate guanylyl cyclase in human airway smooth muscle: the role of protein kinase C 总被引:1,自引:0,他引:1
We recently showed that cultured human airway smooth muscle cells (HASMC) express both soluble and particulate guanylyl cyclases (GC) and that long term treatment with atrial natriuretic peptide (ANP) causes homologous desensitization of particulate GC. Here we determine if protein kinase C (PKC) activation would desensitize particulate GC and probe the role of PKC in particulate GC desensitization. Pretreatment of HASMC with phorbol 12-myristate 13-acetate (PMA), a PKC activator led to time and concentration-dependent desensitization of ANP-stimulated cGMP accumulation. GF109203X, a selective PKC inhibitor, blocked the PMA-induced desensitization, but did not block ANP-induced desensitization. In addition, desensitization by PMA and ANP showed an additive effect. These results suggest that PKC activation can desensitize particulate GC but that the desensitization induced by ANP is PKC-independent. 相似文献
17.
Catalli A Janssen LJ 《American journal of physiology. Lung cellular and molecular physiology》2004,287(5):L1035-L1041
Isoprostanes are generated during periods of oxidative stress, which characterize diseases such as asthma and cystic fibrosis. They also elicit functional responses and may therefore contribute to the pathology of these diseases. We set out to examine the effects of isoprostanes on airway responsiveness to cholinergic stimulation. Muscle bath techniques were employed using isolated bovine tracheal smooth muscle. 8-Isoprostaglandin E2 (8-iso-PGE2) increased tone directly on its own, although the magnitude of this response, even at the highest concentration tested, was only a fraction of that evoked by KCl or carbachol. More importantly, though, pretreatment of the tissues with 8-iso-PGE2 (10 microM) markedly augmented responses to submaximal and even subthreshold concentrations of KCl, carbachol, or histamine, whereas maximal responses to these agents were unaffected by the isoprostane. The augmentative effect on cholinergic responsiveness was mimicked by PGE2 (0.1 microM) and by the FP agonists PGF2 (0.1 microM) and fluprostenol (0.1 microM), but not by the EP3 agonist sulprostone (0.1 microM) or the TP agonist U-46619 (0.1 microM). Antagonists of EP1 receptors (AH-6809 and SC-19920, 10 microM) and TP receptors (ICI-192605, 1 microM) had no effect on 8-iso-PGE2-induced augmentation of cholinergic responsiveness. We conclude that 8-iso-PGE2 induces nonspecific airway smooth muscle hyperresponsiveness through a non-TP non-EP prostanoid receptor. 相似文献
18.
Jahanbakhsh Naghshin Lu Wang Peter D Pare Chun Y Seow 《Journal of applied physiology》2003,95(1):448-53; discussion 435
It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4 degrees C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734-740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional change in the muscle that could lead to airway hyperresponsiveness. Rabbit tracheal muscle explants were passively maintained at shortened and in situ length for 3 and 7-8 days in culture media; the length-tension relationship was then examined. The length associated with maximal force generation decreased by 10.5 +/- 3.8% (SE) after 3 days and 37.7 +/- 8.5% after 7 or 8 days of passive shortening. At day 3, the left shift in the length-tension curve due to adaptation at short lengths was reversible by readapting the muscle at a longer length. The shift was, however, not completely reversible after 7 days. The results suggest that long-term adaptation of airway smooth muscle could lead to increased muscle stiffness and force-generating ability at short lengths. Under in vivo condition, this could translate into resistance to stretch-induced relaxation and excessive airway narrowing. 相似文献
19.
Sobolewski A Jourdan KB Upton PD Long L Morrell NW 《American journal of physiology. Lung cellular and molecular physiology》2004,287(2):L352-L359
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6. 相似文献