首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response.  相似文献   

2.
The synapses in the stratum lacunosum-molecular (str. L-M) of CA1 hippocampal field in 3-month old and 24-month old rats were examined using quantitative ultrastructural methods. No significant difference in the density of synapses and postsynaptic dendritic spines was found between the two age groups. The area of presynaptic terminals and postsynaptic dendritic spines was decreased slightly but significantly in the group of aged as compared to that in the group of young-mature rats. The vesicle number per presynaptic terminal, per area of presynaptic terminals and per volume of neuropil was not changed while the vesicle number per area of synaptic contact zones (SCZ) was increased in the group of aged rats. The mean length, total length and total surface of SCZ were diminished in the group of aged as compared to those in the group of young-mature rats. The same width of the str.radiatum and str.L-M in the two age groups showed that there was no any shrinkage of the neuropil in aged rats. The quantitative alterations in the synapses were accompanied by an increased number of dense and lamellar bodies in presynaptic terminals as well as with a presence of hypertrophic astroglial processes.  相似文献   

3.
Numbers of intact and degenerating axonal terminals (AT) were determined in area 5b of the cat association cortex two, four, and 30 days after electrolytic destruction of the posterolateral thalamic nucleus (PL). The proportion of degenerating AT in area 5b two and four days after PL lesion was found to be 7.4 and 7.3%, respectively. Intact AT in the same field accounted for 83.6% of the total in intact animals four days after PL lesion. A 16.4% reduction occurred, consisting of AT with round vesicles and asymmetrical synaptic contacts (i.e., primarily excitatory AT); 40% of the damaged AT formed synapses on dendrites and 60% on spines. It follows that neurons of cortical association area 5b receive direct excitatory and mainly axonospinal afferents from the thalamic PL. Degenerating AT accounted for 4.6% 30 days after PL lesion, as compared with a decline of 31.2% and a rise of 7.0% in axospinal and axodendritic AT, respectively. No change occurred in axosomatic AT. The total number of AT had declined by 10.0%. Aspects of reinnervation of area 5b neurons following degeneration of the neuronal synapses induced by PL lesion are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 661–667, September–October, 1989.  相似文献   

4.
Agonist-induced internalization of transmembrane receptors is a widespread biological phenomenon that also may serve as a mechanism for synaptic plasticity. Here we show that the agonist AMPA causes a depression of AMPA receptor (AMPAR) signaling at glutamate synapses in the CA1 region of the hippocampus in slices from developing, but not from mature, rats. This developmentally restricted agonist-induced synaptic depression is expressed as a total loss of AMPAR signaling, without affecting NMDA receptor (NMDAR) signaling, in a large proportion of the developing synapses, thus creating AMPAR silent synapses. The AMPA-induced AMPAR silencing is induced independently of activation of mGluRs and NMDARs, and it mimics and occludes stimulus-induced depression, suggesting that this latter form of synaptic plasticity is expressed as agonist-induced removal of AMPARs. Induction of long-term potentiation (LTP) rendered the developing synapses resistant to the AMPA-induced depression, indicating that LTP contributes to the maturation-related increased stability of these synapses. Our study shows that agonist binding to AMPARs is a sufficient triggering stimulus for the creation of AMPAR silent synapses at developing glutamate synapses.  相似文献   

5.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

6.
The structure of the subgel phase of dipalmitoylphosphatidylglycerol (DPPG) has been analyzed by X-ray diffraction techniques. Diffraction recorded from highly oriented DPPG specimens in the subgel phase extends to 2-A resolution. There are sharp lamellar reflections on the meridian, and other reflections lie on a series of wide-angle lattice lines parallel to the meridian and crossing the equator in the range of 8-2 A. The wide-angle lattice lines consist of radially sharp reflections centered on the equator of the X-ray film and also a series of broader, off-equatorial maxima. The lattice lines indicate that the DPPG molecules in each bilayer crystallize in a two-dimensional oblique lattice with dimensions a = 5.50 A, b = 7.96 A, and gamma = 100.5 degrees. These oblique lattices are not regularly aligned from bilayer to bilayer. Analysis of the lamellar diffraction shows that the bilayer has about the same thickness in the subgel and gel (L beta') phases. In the direction normal to the hydrocarbon chains, the chains are significantly closer together in the subgel phase as compared to the normal L beta' gel phase but have about the same separation as the chains in polyethylene and the crystalline n-alkanes. The bilayer thickness, area per lipid molecule, and intensity distribution along the lattice lines all indicate that in the subgel phase the hydrocarbon chains are tilted between 30 and 35 degrees from the normal to the bilayer plane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Although microtubule-associated protein (MAP) 1B and its phosphorylation have been suggested to be important for synapse formation among cortical neurons, the localization of MAP1B in synapses has not yet been confirmed. In this report, we examine the localization of MAP1B in synaptic regions. 2. The localization of MAP1B was observed by immunohistochemical and electron microscopic techniques using specific antibodies against MAP1B. 3. MAP1B immunoreactivities were widely distributed in the cerebral cortex and were observed in the postsynaptic area but not in presynaptic terminals. 4. These synapses were classified as the asymmetrical type. 5. Only some synapses exhibited MAP1B immunoreactivities. MAP1B-immunopositive synapses accounted for about half of the total synapses. 6. Such a localization suggests MAP1B's important roles in synaptic functions.  相似文献   

8.
Cytoskeletal organization at the postsynaptic complex   总被引:8,自引:2,他引:6       下载免费PDF全文
Postsynaptic densities and the adjacent cytoskeleton were examined in deep-etched, unfixed slices of guinea pig anteroventral cochlear nucleus. The postsynaptic density seen in conventional thin sections corresponds to a meshwork of 4-nm filaments associated with intramembrane particles at the postsynaptic active zone of inhibitory as well as excitatory synapses. These filaments intermesh with a lattice of 8- to 9-nm microfilaments, tentatively identified as F- actin, that is concentrated under the postsynaptic density. We postulate that the meshwork of 4-nm filaments anchors receptors to the adjacent microfilament lattice; this extended postsynaptic complex may limit the mobility of receptors and help maintain the curvature of the postsynaptic membrane.  相似文献   

9.
Localization of acetylcholine receptors in central synapses   总被引:7,自引:2,他引:5       下载免费PDF全文
The localization of cholinergic receptors in brain synaptosomes and in synapses of the midbrain reticular formation and hypothalamic preoptic nucleus has been demonstrated by means of a horseradish peroxidase- alpha-bungarotoxin (HRP-alpha-Btx) conjugate. Only a small proportion of the total number of synapses was reactive. Axon terminals of reactive synapses contained primarily small clear vesicles, while synapses characterized by large numbers of dense core vesicles were unreactive. Toxin-binding sites were found to occur in a thickened zone of the postsynaptic surface. This procedure can be employed to study the regional distribution and localization of nicotinic receptor sites in the central nervous system.  相似文献   

10.
The proportion of synaptic contacts occurring on dendrites as well as on dendritic growth cones and filopodia was determined from electron micrographs of developing mouse (C57BL/6J) spinal cord. Comparable areas of the marginal zone adjacent to the lateral motor nucleus were sampled from specimens on the 13th–16th days of embryonic development (E13–E16). At the beginning of this period, synapses upon growth cones and filopodia comprise about 80% of the observed synaptic junctions, but this proportion decreases with developmental time so that in E16 specimens growth cone synapses account for slightly less than 30% of the synaptic population. Conversely, at E13, synapses upon dendrites comprise less than 20% of the total number of synapses, but increase with developmental time so that they account for about 65% of the synaptic population of E16 specimens. From these data, we suggest the following temporal sequence for the formation of synaptic junctions on motor neuron dendrites growing into the marginal zone. New synapses are initially made upon the filopodia of dendritic growth cones. A synaptically contacted filopodium expands to become a growth cone while the original growth cone begins to differentiate into a dendrite. This process is repeated as the dendrite grows farther into the marginal zone so that synapses originally made with filopodia come to be located upon dendrites. This speculation is briefly discussed in relation to the work and ideas of others concerning synaptogenesis and dendritic development.  相似文献   

11.
Summary Representative examples of lowand high-output neuromuscular synapses between motoneuron and distal accessory flexor muscle of the lobster were selected on the basis of their mean quantal content, and subsequently analysed by serial section electron microscopy. The high-output terminal has twice as many synapses as the low-output terminal. However, since the mean surface area of synapses is significantly smaller in the high-output terminal than in the low-output one, the total synaptic surface area between the two types of terminals is similar. Also, though the high-output terminal possesses a greater number of presynaptic dense bodies than its low-output counterpart, the mean number per synapse is similar for the two terminals. The terminals, however, differ significantly in the size of their dense bodies. Thus both the mean and total surface area of these bodies is greater in the high-output terminal than in the low-output one. Moreover, the mean ratio of dense body area to synaptic area is significantly greater for the high-output terminal than for its low-output counterpart. This difference in dense body area parallels the difference in quantal content of synaptic transmission between the lowand high-output terminals and supports the hypothesis that presynaptic densities represent the ultrastructural correlates of transmitter mobilization and/or release.Supported by grants from the National Research Council and Muscular Dystrophy Association of Canada to C.K. Govind. D.E. Meiss is a post-doctoral fellow of the Muscular Dystrophy Association of Canada. We thank Eva Yap-Chung for her expert and unfailing technical assistance  相似文献   

12.
Using the method of the double immune label combined with two antibodies, i.e., monoclonal antibodies to gamma-aminobutyric acid (GABA) and polyclonal antibodies to glycine, the distribution of gamma-aminobutyric acid- and glycine-immunoreactive synapses on motoneurons and primary afferent axons was studied in the frog Rana temporaria spinal cord. An analysis of all labeled boutons on the dendrites and soma of motoneurons showed the existence of three categories of immunoreactive synapses as follows: 7% were labeled for GABA, 23% were labeled for glycine, and approximately 70% were immunoreactive to both GABA and glycine. These results confirm the predominant role of glycine in the postsynaptic inhibition of motoneuronal activity. Three similar populations of synaptic boutons were also founded on primary afferent axons, including one GABA-immunoreactive (25%) and one glycine-immunoreactive (5%); the majority of the immunoreactive synapses had the colocalization of two inhibitory transmitters. As a rule, the higher proportion of axo-axonal synapses was organized in synaptic triads. The possible simultaneous roles of glycine as a transmitter of postsynaptic inhibition and as a transmitter that mediates the process of the autoreception of glutamate in the axo-axonal synapses on the primary afferent fibers are discussed.  相似文献   

13.
An electron-microscopic study was made of 4520 synapses in different layers of the cat auditory cortex. Of the total number of synapses 53% were located on dendritic spines, 37% on dendrites, and 10% on neuron bodies; 91% of the synapses belonged to Gray's type I, 9% to type II. Most of the type I synapses were located on dendrites and dendritic spines, whereas the type II synapses were distributed on neuron bodies, axon hillocks, and large dendrites. Signs of degeneration were discovered 60 h after complete neuronal isolation of an area of the auditory cortex in 22.8% of synapses. No degenerating type II synapses were found. This indicates that they are formed by axons of intracortical neurons. The quantitative and qualitative composition of the synapses were shown to differ in different layers of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 131–137, March–April, 1980.  相似文献   

14.
By means of transmission electron microscopy, the age-related changes in axospinous (ASS) and axodendritic (ADS) synapses in the dorsal part of the rostral neostriatum in two groups of Wistar rats: young (3-month-old), and senescent (25-month-old) were examined. The changes in different parameters, characterizing the ASS and ADS: synaptic density (SD), number of synaptic vesicles (SV), number of synaptic contact zone (SCZ), and number of dendritic spines, bearing synapses (DS) were investigated morphometrically. The SD of the ASS decreased significantly during aging, but the SD of the ADS did not changed significantly. The mean area of the synaptic boutons increased significantly during aging in two types of synapses. The mean number of vesicles per synaptic bouton increased, but the number of vesicles per microm2 of synaptic bouton, and per microm3 of the neuropil decreased. The mean SCZ length increased in both types of synapses. The total SCZ length per 1000 microm2 of the neuropil, and the total area of the SCZ per 1000 microm3 of the neuropil decreased in ASS, but the same parameters of the ADS did not changed significantly. The mean number of synaptic DS per 1000 microm2 of the neropil decreased during aging, but the mean area of the synaptic DS increased. The present results support the hypothesis that the synaptic contacts change significantly during aging, and the ASS are more vulnerable during aging than the ADS.  相似文献   

15.
Z. Zhang  C. Zhang 《Protoplasma》1994,183(1-4):182-184
Summary The cellular mass ofFrankia, a filamentous actinomycete, was readily quantified by estimating hyphal length, using a modification of Tennant's method for the estimation of root length. Each sample ofFrankia was stained with Coomassie Brilliant blue G 250, dispersed well, and suspended in a 0.5% agar solution. One drop of the suspension was placed in a Petroff-Hausser counting chamber with 0.05 by 0.05mm grid squares. The number of intersections betweenFrankia hyphae and the grid lines in a standard area were counted under a microscope and converted to hyphal length. Using the formula: hyphal length (HL) in mm equals (11/14) times the number of intersections (n) times the grid dimension (0.05 mm). The validity of the line intersection method was tested by comparison with total protein estimates of replicate aliquots ofFrankia culture. Correlations between total protein and hyphal length estimates were strong (r2 from 0.76 to 0.95; standard errors of 3 to 9% of estimated length). These results show that line intersection counts may be a satisfactory routine method for quantifyingFrankia in culture and may be especially suitable for detecting small amounts of livingFrankia in less time than with other methods.Dedicated to the memory of Professor John G. Torrey  相似文献   

16.
北京城区花粉致敏植物种类、分布及物候特征   总被引:9,自引:0,他引:9  
为了解北京城区花粉致敏植物的种类、分布格局和物候特征,结合文献调研及专家访问,对北京5环以内的花粉致敏植物进行了调查.结果表明:1)北京城区五环内共有致敏花粉植物19科32属99种,其中北京本地种52种,占总数的52.5%,国内其他地区引进种和国外引进种各占总数的26.3%和21.2%;2)北京城区32属花粉致敏植物以北温带成分为主,占40.6%,其次是世界性分布与泛热带分布;3)公园内的花粉致敏植物种数最多,行道树种中花粉致敏植物的比例最高.北京城区各功能区中花粉强致敏草本的盖度,从大到小的顺序是城市废弃地>体育中心及机关单位>道路绿地>公园>居民区>学校>广场;4)北京城区木本花粉致敏植物的花期主要集中在3—4月,草本在7—9月.  相似文献   

17.
Electron microscopic study and quantitative analysis of the visual cortex synapses in 14, 30 and 60-day-old rats were performed after bilateral enucleation of newly-forn rats. A great amount of synapses of other functional systems was shown to be functioning in the area striata in addition to the synapses formed by specific visual afferents. Alterations in the synapses of the area striata of blind rats are developing gradually, achieving the greatest pronouncement in 60-day-old rats. These changes develop according to the type of atrophic process in connection with dysfunction. The atrophic alterations of the synapses were found both in axo-somatic and axo-dendritic synapses on the dendrite trunks and on the thorns. The alterations of synapses being concentrated in layer IV. The quantitative ratio of different kinds of atrophied synapses in the cross-section of the visual cortex was different suggesting the following conclusion about the distribution of the visual afferents. In layers I and III the visual afferents formed mostly axon-thorn contacts and less amount of axo-somatic and axo-dendritic synapses on the dendrite trunks. In layer IV they mainly formed axo-somatic and axo-thorn synapses and less amount of axo-dendritic ones on the dendrite trunks. In layers V and VI they mainly contact with the dendrite trunks and with the nervous cell bodies and more rarely with thorns.  相似文献   

18.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

19.
Quantitative electronmicroscopic studies have been made on the development of synapses in two modally different areas of the brain (V-VI layers of the visual and auditory cortex) in the rat and mouse Acomys cahirinus within first two weeks of their postnatal life. The density of synapses as well the relative amount of different types of synapses (symmetrical, asymmetrical, axo-spinal and synapses with large amounts of synaptic vesicles) were measured. It was shown that only in rats the development of synapses in the visual area usually is faster than in the auditory one.  相似文献   

20.
The area of the section of presynaptic dense projections of the active zone of axondendritic synapses of the rat's cortex was measured using a television complex. Tissue specimens were contrasted with phosphotungstic acid. Morphometry was carried out in the regime of error correction in measurement, the errors arising in scanning process of image. The area of the section of mitochondria, lysosome, nucleoli, channels and tanks of the endoplasmic reticulum may be measured by the method suggested. Quantitative data, obtained by the morphometry of the synapse ultrastructure, may serve a basis for understanding the mechanism by which synapses are involved in information processes of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号