首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monkey hepatocarcinoma cell monolayer cultures (NCLP-6E) metabolized thyroxine, 3,5,3'-triiodothyronine, 3,3',5'-triiodothyronine and 3,3'-diiodothyronine by phenolic and nonphenolic ring deiodinations and sulfation of the deiodinated products, as shown in previous work with this system. The effects of the antithyroid drugs, propylthiouracil (PTU) and methylmercaptoimidazole (MMI), on these processes was investigated. PTU, at 0.1 and 1 mM, inhibited only phenolic ring deiodination. MMI at 1 mM had no effect, but 32 mM inhibited deiodination of both rings as well as sulfation. The findings suggest that the increased serum rT3 level caused by PTU in vivo is the result of decreased rT3 deiodination, in contrast to the increased rT3 production which is caused by starvation.  相似文献   

2.
The more biologically active thyroid hormone 3,5,3'-triiodothyronine (T(3)), is primarily derived from peripheral deiodination of thyroxine (T(4)). We characterized hepatic deiodination for a commercially important, warm water teleost fish, the red drum (Sciaenops ocellatus). Low K(m) outer-ring deiodination (ORD) activity was determined by production of free iodide ((125)I) upon incubation of hepatic microsomes with radiolabeled T(4). HPLC analysis demonstrated that (125)I, and T(3) were produced in equal amounts, thereby validating 125I as a measure of T(3) production. A small amount of 3,3',5'-triiodothyronine (reverse T(3)) was also produced by inner-ring deiodination. Production of (125)I was linear over a range of 0--100 microg protein/ml and for incubations of 30 min--4 h. Maximal ORD activity was measured at pH 6.6, 50 mM dithiothreitol (DTT) and an incubation temperature of 20 degrees C. Double reciprocal plots demonstrated that the average apparent K(m) was 5.1 nM and the average V(max) was 3.7 pmol T(4) converted/h per mg protein. ORD was not inhibited by propylthiouracil but was 50% inhibited by 90 microM of iodoacetic acid and 7 microM of gold thioglucose. The substrate analog preference was T(4) = tetraiodoacetic acid = reverse T(3) > triiodoacetic acid > T(3). In relation to other tissues, ORD for liver>gill>intestine>kidney. Similar hepatic deiodination activity was present in adult wild, aquacultured and laboratory-reared red drum, but in adult wild red drum the optimum temperature was higher. Red drum hepatic low-K(m) deiodination activity appears to most closely resemble rainbow trout hepatic and mammalian Type II deiodination. Evidence of inner-ring T(4) deiodination suggests a more active hepatic iodothyronine catabolic pathway than in other teleost species.  相似文献   

3.
Studies were carried out to compare the 5' deiodination reactions of thyroxine (T4) and 3, 3', 5'-triiodothyronine (rT3) in rat liver and kidney homogenates. The 5'-deiodinase activity was assayed by the 3, 5, 3'-triiodothyronine (T3) produced from T4 or by the 125I-iodide released from 125I-rT3. The two 5' deiodination reactions had similar ranges of optimal pH, incubation temperature, and apparent Km, T4 1.1 and rT3 1.3 microM. However, the apparent Vmax values for T4 and rT3 deiodination reactions were 0.9 and 220 pmol/mg protein/min, respectively. Both reactions were stimulated by thiol reagent but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil (PTU) on the 5' deiodination of rT3 was 50 times as great as that of T4. Only the 5' deiodination of rT3 was inhibited by low concentrations of calcium and magnesium. The 5' deiodination reactions in the liver and kidney tissues showed very similar substrate specificity. However, only the hepatic deiodinase activity was reduced to 60-65% of the control value after fasting, whereas the renal 5'-deiodinase activity was unaffected or even enhanced by fasting up to 72 hours. The results showed the existence of a diverse and complex 5' deiodination system in the rat tissues which is comprised of multiple similar but distinct 5'-deiodinase enzymes with respect to their substrate specificity, tissue specificity and regulation.  相似文献   

4.
We measured low substrate (<1 nM) thyroid hormone (TH) deiodination activities in liver, muscle, intestine, and brain microsomes of Atlantic hagfish fasted for 2 weeks and found extremely low thyroxine (T(4)) outer-ring deiodination (T(4)ORD) and inner-ring deiodination (T(4)IRD) as well as 3,5,3'-triiodothyronine (T(3)) IRD activities. T(3)ORD, 3',5'-triiodothyronine (rT(3)) ORD and rT(3)IRD activities were undetectable. Hagfish deiodinating pathways resembled those of teleosts in requiring a thiol cofactor (dithiothreitol, DTT) and in their inhibition by established deiodinase inhibitors and by TH analogues. However, under optimal pH and DTT conditions intestinal T(4)ORD activity exceeded that of liver about 10-fold. This contrasts with the situation in teleosts but resembles that reported recently in larval and adult lampreys, suggesting the intestine as a primary site of TH deiodination in lower craniates.  相似文献   

5.
S Kobayshi  Y Gao  R L Ong  C S Pittman 《Life sciences》1986,38(24):2231-2238
Studies were carried out to compare the 5'-deiodination reactions of thyroxine (T4) and 3,3'-5'-triiodothyronine (rT3) in 2.5% rat liver homogenates. The 5'-deiodinase activity was assayed by the 3,5,3'-triiodothyronine (T3) produced from T4 or by 125I-rT3. Under our experimental conditions, the two 5'-monodeiodination reactions resulted in similar apparent KMs: 1.5 microM for T4 and 1.1 microM for rT3. However, the apparent Vmax values of T4 and rT3 deiodination reactions were, respectively, 0.91 and 222 pmol/mg protein/min. Both reactions were stimulated by thiol reagents but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil on the 5'-deiodination of rT3 was at least 50 fold greater than that of T4. The divalent ion requirement of the deiodination system was tested with CaCl2, MgCl2, and ZnCl2 at a range of concentrations. Zinc ion appeared to be a potent inhibitor in both T4 and rT3 deiodination systems. Only the 5'-deiodination of rT3 was inhibited slightly by low concentrations of calcium and magnesium ions. Our results suggest that based on their apparently distinct regulation mechanisms, the 5'-monodiodination of T4 and rT3 in rat liver homogenates is likely mediated by more than one enzyme, despite the similarity of observed KMs.  相似文献   

6.
Estimates have been made of the amounts of 3,5,3'-triiodothyrone (T3) and 3,3',5'-triiodothyronine (rT3) derived from peripheral deiodination of thyroxine (T4) in young pigs. Two methods were used. The first depended on the assumption that deiodination occurs at the same rate in normal animals and in thyroidectomized animals on T4 replacement therapy. The second on the assumption that T3 and rT3 are secreted in the same proportions as they occur in thyroglobulin. The first method arguably gives the better estimate which is that 87% of circulating T4 is monodeiodinated to T3 and rT3. Peripheral conversion accounts for 76 and 69% of the circulating T3 and rT3, respectively.  相似文献   

7.
Thyroid status in the obese syndrome of rats   总被引:2,自引:0,他引:2  
The thyroid function was explored by comparing serum total and free iodothyronine levels in young male genetically obese Zucker rats and in their lean littermates, aged from 6 to 8 weeks old. Total and free thyroxine (T4) and 3,5,3'triiodothyronine (T3) levels were significantly decreased in obese rat serum while total 3,3',5'-triiodothyronine (rT3) remained constant. Radioactive T4 half life is slower in the plasma of obese rats. Peripheral synthesis of T3 from deiodination of T4 is also decreased in obese rat liver homogenate. These modifications produce changes in liver mitochondria oxidative phosphorylation and in marker enzyme activity, which are usually associated with hypothyroidism and hypothalamic disturbances. Genetic obesity probably involves activation of peripheral deiodination of T4 to rT3 which induces biochemical and metabolic changes.  相似文献   

8.
We have described the tissue distribution and properties of thyroid hormone (TH) deiodination activities of the marine American plaice, Hippoglossoides platessoides. We then studied the 1- or 4-week responses of the plaice liver and brain deiodination activities and the plasma thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels to an intraperitoneal injection (5-500 ng/g) of the polychlorinated biphenyl (PCB) congeners 77 (3,3'-4,4'-tetrachlorobiphenyl) or 126 (3,3',4,4',5-pentachlorobiphenyl). T4 and 3,3'5'-triiodothyronine (rT3) outer-ring deiodination (ORD) activities were greater in liver than in kidney, gill, heart, brain, intestine or muscle; inner-ring deiodination (IRD) activity occurred in all tissues but was consistently higher in brain. Deiodination characteristics (optimal pH, optimal dithiothreitol concentration, responses to inhibitors and apparent Km values of 0.6-4 nM) fell in the same rage as those of low-Km deiodinases in other teleosts. Deiodination activities were maximal when assayed at 25 degrees C but uniformly low over the natural range of 0-9 degrees C. Neither PCB 77 nor PCB 126 altered brain T4ORD activity or plasma T4 levels (P < 0.05). However, at 1 week post injection hepatic T4ORD activity was increased and plasma T3 levels lowered by PCB 77 (5 and 25 ng/g), while hepatic IRD activity was increased by PCB 126 (50 and 500 ng/g). Neither PCB 77, PCB 126 nor selected hydroxylated. PCBs given in vitro compared with T4 for binding sites on plasma proteins or altered hepatic deiodination activity, indicating no direct action on plasma proteins or deiodinases We conclude that plaice TH deiodination tissue distribution and characteristics resemble those of other teleosts. Deiodination activities are low at natural assay temperatures but at 1 week show some responses to PCBs 77 and 126.  相似文献   

9.
Parameters of the peripheral metabolism of thyroxine (T4) were studied in the early postnatal period. Iopanoic acid (IOP) was administered to newborn rats that were either euthyroid or rendered hypothyroid in utero by propylthiouracil (PTU) or methimazole (MMI) administration to the mothers during gestation and injected with thyroxine on postnatal days 6 and 7. In euthyroid newborn rats given IOP from postnatal day 6, the plasma T4 level increased (+50%) while the plasma 3,3',5'-triiodothyronine (T3) level slightly decreased (-18%). Peripheral deiodination of T4 was also reduced (about -50%) as estimated by thyroid 125I uptake after injection of 125I (3'-5')L-T4. In the newborn rats rendered hypothyroid in utero and given T4 on postnatal days 6 and 7, IOP treatment started on day 4 decreased the constant rate of elimination (-50%), the distribution volume (-43%) and the metabolic clearance (-74%) of plasma T4. The results were the same in PTU- and MMI-treated newborn rats. The differences between newborn and adult animals under IOP treatment are discussed.  相似文献   

10.
Iodothyronine monodeiodinase activities in homogenates of cultured monkey hepatocarcinoma cells were measured by the deiodination of [3.5-(125)I]-diiodo-L-thyronine or 3-[3',5'-(125)I]triiodo-L-thyronine (phenolic ring-labeled 'reverse' triiodothyronine). The assay system utilized a small ion-exchange column (AG50W-X4, O.9 X approximately 1 cm) to measure 125I-. Both deiodinases were destroyed by boiling for 1 min. Maximal nonphenolic ring deiodination was observed at pH 7.9 whereas maximal phenolic ring deiodination was at pH 6.3. Both reactions were enhanced strongly by dithiothreitol (0.1-5mM), and slightly by 5 mM beta-mercaptoethanol. Phenolic ring deiodination was strongly inhibited by 0.1 mM propylthiouracil. Nonphenolic ring deiodination was accelerated by EDTA (1.2 MM) and inhibited by Mg(2+) (5mM). Methylmercaptoimidazol and Mg(2+), Ca(2+) and Mn(2+) (0.1-1.0 mM) had little or no effect on either reaction, but Zn(2+) (0.1 mM) strongly inhibited both. Both reactions were inhibited by excess iodothyronine analogues at 10 mM to 10 micron M, and thyroxine was shown to be a competitive inhibitor in both cases. On the basis of relative affinities and inhibitory effects, it appears that the order of affinity for the phenolic ring deiodinase is 3,3',5'-triiodo-L-thyronine(rT3) greater than L-thyroxine(T4) greater than 3,5,3'-triiodo-L-thyronine(T3), whereas for the nonphenolic ring deiodinase the order is T3 greater than T4 greater than rT3. Diiodotyrosine did not affect their deiodination.  相似文献   

11.
In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic-pituitary-gonadal axis. Recent investigations of Japanese quail show that long-day-induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T(4)) to bioactive 3,5,3'-triiodothyronine (T3). The T3 content in the MBH is approximately 10-fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long-day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion.  相似文献   

12.
Rats of both sexes were either cold acclimated (6 +/- 1 degree C) or treated with thyroxine (T4) or 3,5,3'-triiodothyronine (T3) (500 micrograms/kg body wt daily s.c. for 3 weeks). Wet weight, total proteins, lipids and nucleic acids in the interscapular brown adipose tissue (IBAT) were measured. Values obtained with T4 treatment were similar to those obtained with T3 treatment. T3 is the main thyroidal hormone in the rat and it is formed from T4 deiodination in liver and kidney. As T4-treated rats have not received T3 directly and its IBAT has a similar composition to that of T3-treated rats, it is concluded that peripheral T4 deiodination is governed by the plasma T4 levels. Total proteins and DNA content were similar in cold-acclimated and T3- or T4-treated rats, which is interpreted as thyroidal hormones having an action at these levels.  相似文献   

13.
The aim of this study was to see whether the inhibitory effect of propylthiouracil on thyroidal secretion of 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) could be reproduced in intensively stimulated thyroids, and to elucidate whether an increase in the fractional deiodination of thyroxine (T4) to T3 and rT3 during iodothyronine secretion might be responsible for the transient fall in the T4/T3 and T4/rT3 ratios in thyroid secretion seen in the early phase after stimulation of thyroid secretion. For this purpose T4, T3 and rT3 were measured in effluent from isolated dog thyroid lobes perfused in a non-recirculation system using a synthetic hormone free medium. 1 mmol/1 propylthiouracil induced a significant reduction in thyroid-stimulating hormone (TSH) stimulated T3 and rT3 release while the release of T4 was unaffected. This supports our previous conclusion that T4 is partially monodeiodinated to T3 and rT3 during thyroid secretion. Infusion of 1 mmol/l propylthiouracil for 30 min or 3 mmol/l propylthiouracil for 120 min did not abolish the transient fall in effluent T4/T3 and T4/rT3 induced by TSH stimulation. Thus, this phenomenon seems not to depend on intrathyroidal iodothyronine deiodinating processes.  相似文献   

14.
The conversion of thyroxine to 3,5,3'-triiodothyronine (T3) is the first step in thyroid hormone action, and the Type I iodothyronine deiodinase supplies most of this extrathyroidal T3 in the rat. We found that the cDNA coding for this enzyme contains an in-frame UGA encoding the rare amino acid selenocysteine. Using site-directed mutagenesis, we have converted selenocysteine to cysteine and expressed the wild-type and cysteine mutant enzymes in JEG-3 cells by transient transfection. The kinetic properties of the transiently expressed wild-type enzyme are nearly identical to those reported for rat liver Type I deiodinase. Substitution of sulfur for selenium causes a 10-fold increase in the Km of the enzyme for the favored substrate 3,3',5'-triiodothyronine (rT3), a 100-fold decrease in the sensitivity of rT3 deiodination to competitive inhibition by gold and a 300-fold increase in the apparent Ki for uncompetitive inhibition by 6-n-propylthiouracil. These results demonstrate that selenium is responsible for the biochemical properties which characterize Type I iodothyronine monodeiodination.  相似文献   

15.
We measured microsomal low-K(m) outer-ring deiodination (ORD) and inner-ring deiodination (IRD) activities for thyroxine (T(4)) and 3, 5,3'-triiodothyronine (T(3)) in intestine and liver in nonmetamorphosing (undersized) larvae, immediately premetamorphic larvae, animals in stages 1-7 of metamorphosis, and immediately postmetamorphic sea lampreys (Petromyzon marinus). For intestine: T(4)ORD activity was relatively low in nonmetamorphosing larvae, increased in premetamorphic individuals, was highest in stages 1 and 2 and was very low during stages 3-7; T(4)IRD activity was negligible until stage 3 but increased 4.7-fold through stages 3 to 7 such that T(4)IRD activity was 14 times T(4)ORD activity at stage 6; T(3)ORD activity was undetectable; T(3)IRD activity was not measured through stages 3-7 but correlated with T(4)IRD activity at other stages. For liver: deiodination was only measured up to stage 2 and in postmetamorphic animals; in contrast to intestine, T(4)ORD activity fell to low levels at stage 2 and was low during postmetamorphosis; T(4)IRD and T(3)IRD activities were very low and uninfluenced by developmental stage; T(3)ORD activity was undetectable. We conclude that (1) deiodination activity is usually much higher in intestine than in liver, (2) intestinal ORD and IRD activities change reciprocally so that ORD predominates in early metamorphosis but IRD predominates in mid and late metamorphosis, and (3) changes in intestinal deiodination may contribute to the characteristic depression of plasma T(4) and T(3) levels during spontaneous metamorphosis. J. Exp. Zool. 286:305-312, 2000.  相似文献   

16.
Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T4) into selenocysteines, can catalyze the deiodination of T(4) to 3,5,3'-triiodothyronine (T(3)) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with Km values for T(4) and DTT of approximately 0.8 microM and 1.8 mM, respectively, and V(m) value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a Ki value of approximately 120 microM at 2.0 microM of T(4) concentration, revealing that PTU was a competitive inhibitor for DTT.  相似文献   

17.
The binding of purified 131I-3, 3', 5'-triiodothyronine (reverse T3) (rT3) to normal human serum components was investigated by a radioimmunoelectrophoretic technique. When anti-whole human serum was used, five distinct arcs of radioactivity were observed. Evidence was obtained that five of these radioactive arcs were not artifacts, but were due to components binding rT3. From the radioimmunoelectrophoretic patterns with specific antisera, five of these components were identified as thyroxine binding prealbumin, albumin, thyroxine binding globulin (TBG) and alpha 1-and beta-lipoproteins. No radioactive arc of TBG was detected in serum from a patient with TBG deficiency.  相似文献   

18.
1H NMR data of a series of thyroid hormone analogues, e.g., thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), 3-monoidothyronine (3-T1), 3'-monoiodothyronine (3'-T1), and thyronine (TO) in dimethylsulfoxide (DMSO) have been obtained on a 300 MHz spectrometer. The chemical shift and coupling constant are determined and tabulated for each aromatic proton. The inner tyrosyl ring protons in T4, T3, and 3,5-T2 have downfield chemical shifts with respect to those of the outer phenolic ring protons. Four-bond cross-ring coupling has been observed in all the monoiodinated rings. However, this long-range coupling does not exist in T4, diiodinated on both rings, and T0, containing no iodines on the rings. There is no evidence that at 30 degrees C these iodothyronines have any motional constraint in DMSO solution. In addition to identification of the hormones, the potential use of some characteristic peaks as probes in binding studies is discussed.  相似文献   

19.
Iodothyronine monodeiodinase activities in homogenates of cultured monkey hepatocarcinoma cells were measured by the deiodination of [3,5-125I]triido-l-thyronine or 3-[3′5′-125I]triido-l-thyronine (phenolic ring-labeled ‘reverse’ triiodothyronine). The assay system utilized a small ion-exchange column (AG50W-X4, 0.9×~1 cm) to measure 125I?. Both deiodinases were destroyed by boiling for 1 min.Maximal nonphenolic ring deiodination was observed at pH 7.9 whereas maximal phenolic ring deiodination was at pH 6.3. Both reactions were enhanced strongly by dithiothreitol (0.1–5 mM), and slightly by 5 mM β-mercaptoethanol. Phenolic ring deiodination was strongly inhibited by 0.1 mM propylthiouracil. Nonphenolic ring deiodination was accelerated by EDTA (1.2 mM) and inhibited by Mg2+ (5 mM). Methylmercaptoimidazol and Mg2+, Ca2+ and Mn2+ (0.1–1.0 mM) had little or no effect on either reaction, but Zn2+ (0.1 mM) strongly inhibited both.Both reactions were inhibited by excess iodothyronine analogues at 10 mM to 10μM, and thyroxine was shown to be a competitive inhibitor in both cases. On the basis of relative affinities and inhibitory effects, it appears that the order of affinity for the phenolic ring deiodinase is 3,3′,5′-triiodo-l-thyronine-(rT3) > l-thyroxine(T4) > 3,4,3′-triido-l-thyronine(T3), whereas for the nonphenolic ring deiodinase the order is T3 > T4 > rT3. Diiodotyrosine did not affect their deiodination.  相似文献   

20.
Rats were fed selenium-deficient (less than 0.005 mg selenium/kg) or selenium-supplemented diets (0.1 mg selenium/kg, as Na2SeO2) for up to five wks from weaning to assess the effects of developing selenium deficiency on the metabolism of thyroid hormones. Within two wks 3:5,3'-triiodothyronine (T3) production from thyroxine (T4) in liver homogenates from selenium-deficient rats was significantly lower compared with the activity in liver homogenates from selenium-supplemented rats. This decreased activity was probably responsible, in part, for the higher T4 and lower T3 concentrations in plasma from the selenium-deficient rats after 3, 4, and 5 weeks of experiment. Repletion of selenium-deficient rats with single intra-peritoneal injections of 200 micrograms selenium/kg body wt. (as Na2SeO3) 5 days before sampling reversed the effects of the deficiency on thyroid hormone metabolism and significantly increased liver and plasma glutathione peroxidase activities. However a dose of 10 micrograms selenium/kg body wt given to rats of similar low selenium status had no effect on thyroid hormone metabolism or glutathione peroxidase activity but did reverse the increase in hepatic glutathione S-transferase activity characteristic of severe selenium deficiency. Imbalances in thyroid hormone metabolism are an early consequence of selenium deficiency and are probably not related to changes in hepatic xenobiotic metabolizing enzymes associated with severe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号