首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, was used to study the importance of mevalonic acid (MVA) for cell cycle progression of tobacco (Nicotiana tabacum L.) BY-2 cells. After treatment with 5 microM mevinolin, the cell cycle progression was completely blocked and two cell populations accumulated (80% in phase G0/G1 and 20% in G2/M). The arrest could be released by subsequent addition of MVA. Effects were compared to those caused by aphidicolin, an inhibitor of alpha-like DNA polymerases that blocks cell cycle at the entry of the S phase. The 80% proportion of mevinolin-treated TBY-2 cells was clearly arrested before the aphidicolin-inducible block. By the aid of a double-blocking technique, it was shown that the mevinolin-induced cell arrest of highly synchronized cells was due to interaction with a control point located at the mitotic telophase/entry G1 phase. Depending on the developmental stage, mevinolin induced rapid cell death in a considerable percentage of cells. Mevinolin treatment led to a partial synchronization, as shown by the increase in mitotic index. The following decrease was correlated with the above-mentioned induction of cell death.  相似文献   

2.
This study was undertaken to gain more insight into the effects of cyclic adenosine monophosphate (cAMP) on cell-cycle progression in the B-lymphoid precursor cell line Reh. The adenylate cyclase activator forskolin reduced the proliferation of asynchronously growing Reh cells by 50% after 72 hr culture. Growth inhibition was associated with an accumulation of cells in G1. Furthermore, we demonstrated that forskolin provoked a delay of cells for approximately 10 hr in G2/M prior to the G1 arrest. Two different methods were applied to elucidate how cells in different phases of the cell cycle were affected by an elevated cAMP level. One method was based on centrifugal elutriation, whereby synchronous cell populations from the different phases of the cell cycle were isolated. By the other method, S-phase cells were selectively stained by pulsing asynchronously growing cells with bromo-deoxyuridine (BrdU). The data demonstrate that the position of a cell in the cell cycle is critical in determining how the cell will respond to an elevated cAMP level. Thus cells in G1 at the time forskolin is added are not delayed in G2/M, but they will subsequently accumulate in G1 after 48 hr. Cells given forskolin in G2/m, however, are delayed for 10 hr in G2/M, but they do not accumulate in G1. Cells given forskolin in the S phase are delayed in G2/M as well as arrested in G1. The results suggest that cAMP inhibits growth of the Reh cells by preventing the cells from passing important restriction points located in the G1 and G2 phases of the cell cycle.  相似文献   

3.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

4.
cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in quiescent cells but dramatically reducing it in cycling cells. The latter is due to a rapid and dramatic loss of mitotic histone H3 phosphorylation caused by a disruption in G2 progression, as evidenced by the inhibition of mitotic entry and decreased activity of the CyclinB/Cdk1 kinase. The inhibition of G2 progression induced through cAMP signaling is dependent on expression of the catalytic subunit of PKA and is highly sensitive to intracellular cAMP concentration. The mechanism by which G2 progression is inhibited is independent of both DNA damage and MAP kinase signaling. Our results suggest that cAMP signaling activates a G2 checkpoint by a unique mechanism and provide new insight into normal cellular regulation of G2 progression.  相似文献   

5.
Cell cycle control by Ca2+ in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
We established an experimental system suitable for study of cell cycle regulation by Ca2+ in the yeast Saccharomyces cerevisiae. Systematic cell cycle analysis using media containing various concentrations of Ca2+, a Ca2(+)-ionophore (A23187), and a Ca2(+)-chelator [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) revealed that simultaneous addition of 10 microM A23187 and 10 mM EGTA to cells growing in a Ca2(+)-deficient medium at 22 degrees C caused rapid decrease in intracellular Ca content and resulted in transient G1 arrest followed by block mostly at G2/M, as revealed by flow cytometry. Recovery from G1 arrest was not due to coordinated initiation of DNA synthesis and bud emergence: unbudded cells with S or G2/M DNA were observed. Examination of terminal phenotype suggested that Ca2+ was required at all the stages of the cell cycle except for the initiation of DNA synthesis. The intracellular cAMP level decreased within 10 min of addition of A23187 and EGTA. No significant transient G1 arrest was observed in cells incubated with 8-Br-cAMP, or RAS2val19 and delta bcy1 mutants, which produce a high level of cAMP and have constitutively activated cAMP-dependent protein kinase, respectively. These results indicate that Ca2+ is essential for cell cycle progression and suggest that Ca2+ may regulate the cAMP level. This system will be useful for genetic and molecular studies on cell cycle events regulated by Ca2+.  相似文献   

6.
During the G1/S transition of the cell cycle variations in the labelling by 8-N3-[32P]cAMP of the protein kinase A regulatory subunits RI and RII, used as a probe to monitor post-translational modifications that may regulate cAMP binding, were observed in synchronized HeLa cells. A decrease in 8-N3-[32P]cAMP labelling of RI, RII and RII phosphorylated by the catalytic subunit of PKA was correlated with the increased percentage of cells in phases G1. An increase in 8-N3-[32P]cAMP incorporated into the 54-kDa RII subunit during progression from G1 to S was correlated with an increase in intracellular cAMP. A transient increase in Mn-SOD activity was detected in cells arrested at the G1/S transition using two different techniques, suggesting that oxidative modulation of regulatory subunits by free radicals may modify cAMP binding sites during the cell cycle. Decreased photoaffinity labelling by 8-N3-[32P]cAMP of RI, RII and autophosphorylated RII subunits was found to be an inherent characteristic of PKA in the G1/S transition.  相似文献   

7.
Indomethacin, a non-steroidal anti-inflammatory drug (NSAID), has been reported to inhibit the growth of medullary thyroid carcinoma (MTC) cells in vitro. However, the mechanism of inhibition of MTC cell growth by indomethacin and its potency have yet to be revealed. We examined the effect of indomethacin on three different MTC cell lines (TT cells, DRO 81-1 cells and HRO 85-1 cells) and two non-MTC cells. The mechanism of indomethacin action in MTC cells was investigated by analyzing intracellular prostaglandin level, apoptosis, and cell cycle in TT cells. Indomethacin inhibited cell growth of all three MTC cell lines but not normal thyroid cells or anaplastic thyroid carcinoma cells. Indomethacin at 10 microM or greater showed a dose response inhibition of cell growth. Indomethacin at 25 muM, a putative therapeutic serum indomethacin level, showed potency similar to 100 to 200 nM sunitinib, a receptor tyrosine kinase inhibitor. To examine whether prostaglandin depletion might determine the inhibition of MTC cell growth, we created different prostaglandin E2 (PGE2) levels in TT cells using three different NSAIDs. A profound PGE2 depletion by indomethacin-ester, a potent cyclooxygenase (COX) II inhibitor, showed the least inhibition of cell growth. Indomethacin did not increase apoptosis of TT cells. Indomethacin, but not naproxen or indomethacin-ester, reduced cell cycle progression into S phase; this was unrelated to the degree of PGE2 depletion. The expression of phosphorylated retinoblastoma (pRb) protein that shifts cells from G(1) to S phase was reduced after exposure to indomethacin. In conclusion, indomethacin has specific anti-tumor effect on MTC cells, probably by reducing cell cycle progression into S phase rather than by prostaglandin depletion. Since no drug therapy is currently available for MTC, indomethacin may be one of the therapeutic candidates.  相似文献   

8.
A widely accepted notion is that an increasing cellular cyclic AMP (cAMP) concentration is prerequisite for increasing tyrosinase activity and melanin synthesis and for regulating proliferation of pigment cells. alpha-Melanocyte stimulating hormone (alpha-MSH) increases cAMP and tyrosinase activity in Cloudman melanoma cells. Prostaglandins (PGs) E1 and E2 increase melanoma cell tyrosinase activity and inhibit proliferation. Both PGs, but not alpha-MSH, block the progression of Cloudman melanoma cells from G2 phase of the cell cycle into M or G1. Only PGE1 and not PGE2 causes an elevation of cellular cAMP concentrations. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at 5 x 10(-4) M effectively blocks the increased cAMP synthesis by cells treated with 10 micrograms/ml PGE1. The addition of DDA, however, enhances the melanogenic response of melanoma cells to 10 micrograms/ml PGE1 or PGE2, 10(-7) M alpha-MSH, 10(-4) M isobutylmethylxanthine, 10(-4) M dibutyryl cyclic AMP. DDA also augments the effects of PGE1 or PGE2 on the melanoma cell cycle. Moreover, when DDA is added concomitantly with alpha-MSH, more cells are recruited into G2 than observed in untreated controls. Neither alpha-MSH nor DDA alone has any effect on the cell cycle. These findings undermine the role of cAMP in the melanogenic process and suggest that blocking melanoma cells in G2 may be required for the remarkable stimulation of tyrosinase activity observed with PGE1 or PGE2 alone or in combination with DDA. The observed block in G2 may be essential for the synthesis of sufficient mRNA, which is required for stimulation of tyrosinase activity.  相似文献   

9.
Intracellular signaling processes by which hematopoietic growth factors regulate megakaryocytopoiesis remain uncompletely understood. Cyclic AMP (cAMP) has been shown to be implicated in the regulation of growth and differentiation in various normal and malignant cell types. Since a few studies have suggested the possible involvement of the cAMP pathway as one of the intracellular mechanisms whereby megakaryocytopoiesis may be regulated, we investigated the functional effects of cAMP on the human megakaryoblastic Dami cell line. We observed that exposure of Dami cells to cAMP analogs or to agents elevating intracellular cAMP levels yielded dose-dependent cell growth inhibition. Cell cycle progression analysis of cells predominantly synchronized at the G1/S boundary by prior treatment with hydroxyurea revealed that cAMP transiently accumulated cells in the G2/M phase, then slowing down cell cycle. On the other hand, immunofluorescence and Northern blot analysis of megakaryocytic differentiation marker expression showed that probes we have used significantly inhibited GPlb expression. Moreover, although these agents used alone did not affect GPllb/llla expression, they markedly reversed phorbol ester-induced GPllb/llla expression increase. These inhibitory cAMP actions on glycoprotein expression were not the result of cell cycle perturbation since we observed that GPlb and GPllb/llla expression were not cell cycle dependent. All these data may then be consistent with a potential negative regulatory role of the cAMP intracellular signaling pathway during megakaryocytopoiesis. © 1995 Wiley-Liss, Inc.  相似文献   

10.
It was examined whether ethylene induces programmed cell death in a cell cycle-specific manner. Following synchronization of the tobacco TBY-2 cell line with aphidicolin and its subsequent removal, ethylene was injected into the head space of 300 cm(3) culture flasks at 0 h or 3.5 h later and cells were sampled for 26 h. There were significant increases in cell mortality at G(2)/M in both the 0 h and 3.5 h ethylene treatments, and for the latter treatment, another peak in S-phase. The effect at G(2)/M was greater in the 3.5 h treatment, but was ameliorated by the simultaneous addition of silver nitrate (1.2 microM). In addition, the 3.5 h ethylene treatment resulted in a 1 h delay in the characteristic rise in the mitotic index following aphidicolin-induced synchrony. The addition of silver nitrate alone (1.2 microM), also delayed the entry of cells into mitosis but had no effect on cell cycle length compared with the controls (14 h throughout all treatments) but it induced a peak of mortality 2.5 h after its addition. Nuclear shrinkage was also a characteristic feature of dying cells at G(2)/M. Using Apoptag, an in situ apoptosis detection kit, nuclear DNA fragmentation was observed in the TBY-2 cells which were often isolated on the end of a filament of normal cells. In the 3.5 h ethylene treatment, a marked increase was noted in the percentage of such cells at the G(2)/M transition compared with the controls. Hence, the data show cell death occurring at a major phase transition of the cell cycle and the observations of nuclear shrinkage, isolation of dying cells and nuclear DNA fragmentation suggest a programmed mechanism of cell death exacerbated by ethylene treatment.  相似文献   

11.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

12.
We demonstrate here the regulatory role of cAMP in cell cycle of Candida albicans. cAMP was found to be a positive signal for growth and morphogenesis. Phosphodiesterase inhibitor aminophylline exhibited significant effects, i.e., increased growth, as well as induced morphogenesis. Atropine and trifluoperazine negatively regulated (inhibited) growth and did not induce morphogenesis. These changes were attributed to increase in cAMP levels and protein kinase A (PKA) activity in presence of aminophylline, while reduction was observed in atropine and trifluoperazine (TFP) grown cells. Alteration in cAMP signaling pathway affected the cell cycle progression in Candida albicans. Increased cAMP levels in aminophylline grown cells reduced the duration of cell cycle by inciting the cell cycle-specific expression of G1 cyclins (CLN1 and CLN2). However atropine and trifluoperazine delayed the expression of G1 cyclins and hence prolonged the cell cycle. Implication of cAMP signaling pathway in both the cell cycle and morphogenesis further opened the channels to explore the potential of this pathway to serve as a target for development of new antifungal drugs.  相似文献   

13.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

14.
15.
Zhang T  Du J  Liu L  Chen X  Yang F  Jin Q 《PloS one》2012,7(5):e36652
Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C(19)H(19)O(6)P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca(2+)-calmodulin (CaM) and Ca(2+)-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca(2+)-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca(2+)-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential new drug for the therapy of human cervical carcinoma.  相似文献   

16.
The ascorbate (ASC) and glutathione (GSH) metabolisms were studied in cultured Nicotiana tabacum cv. Bright Yellow 2 (TBY-2) cells. TBY-2 cells were found to be endowed with L-galactono-γ-lactone dehydrogenase (GLDH) (EC 1.3.2.3), an enzyme that converts L-galactono-γ-lactone into ASC. Cellular fractionation of TBY-2 protoplasts indicated that this enzyme is exclusively localised in mitochondria and associated to the membrane fractions. During the growth cycle of TBY-2 cell culture, GLDH transiently increased, reaching the maximum value on the third day of culture, at the beginning of the exponential phase, when the cell proliferative activity was also higher. Similar behaviour has been observed for ASC and GSH contents. The activities of ascorbate peroxidase (APX) (EC 1.11.1.11), ascorbate-free radical reductase (AFRR) (EC 1.6.5.4), dehydroascorbic acid reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) also transiently raised. However, the scale of the increases varied being about 4-fold for APX and AFRR, 2-fold for DHAR and more than 11-fold for GR. The behaviour of the ASC and GSH recycling enzymes allowed TBY-2 cells to maintain both dehydroascorbic acid and glutathione disulphide at low levels, even under conditions of high ASC and GSH utilisation. The relationship between the ASC and GSH metabolisms during the growth cycle of TBY-2 cell suspension cultures is also discussed.  相似文献   

17.
cAMP positively and negatively regulates hepatocyte proliferation but its molecular targets are still unknown. Cyclin A2 is a major regulator of the cell cycle progression and its synthesis is required for progression to S phase. We have investigated whether cyclin A2 and cyclin A2-associated kinase might be one of the targets for the cAMP transduction pathway during progression of hepatocytes through G1 and G1/S. We show that stimulation of primary cultured hepatocytes by glucagon differentially modulated the expression of G1/S cyclins. Glucagon indeed upregulated cyclin A2 and cyclin A2-associated kinase while cyclin E-associated kinase was unmodified. In conclusion, our study identifies cyclin A2 as an important effector of the cAMP transduction network during hepatocyte proliferation.  相似文献   

18.
The effects of ascorbate (ASC) and dehydroascorbate (DHA) on cell proliferation were examined in the tobacco Bright Yellow 2 (TBY-2) cell line to test the hypothesis that the ASC-DHA pair is a specific regulator of cell division. The hypothesis was tested by measuring the levels of ASC and DHA or another general redox pair, glutathione (GSH) and glutathione disulfide (GSSG), during the exponential-growth phase of TBY-2 cells. A peak in ASC, but not GSH, levels coincided with a peak in the mitotic index. Moreover, when the cells were enriched with ascorbate, a stimulation of cell division occurred whereas, when the cells were enriched with DHA, the mitotic index was reduced. In contrast, glutathione did not affect the mitotic-index peak during this exponential-growth phase. The data are consistent in showing that the ASC-DHA pair acts as a specific redox sensor which is part of the mechanism that regulates cell cycle progression in this cell line.  相似文献   

19.
Large increases in cAMP concentration inside the cell are generally growth inhibitory for most cell lines of mesenchymal and epithelial origin. Moreover, recent data suggest a role of cAMP in survival of different cell types. Herein, the ability of forskolin (an adenylyl cyclase activator) and IBMX (3-isobutyl-1-methylxanthine) (a phosphodiesterase inhibitor) to modulate cell cycle progression and survival of human pancreatic cancer cells was evaluated. We showed that forskolin + IBMX inhibited serum-induced ERK activities, Rb hyperphosphorylation, Cdk2 activity, and p27(Kip1) downregulation and caused G1 arrest in MIA PaCa-2 cells. Furthermore, forskolin + IBMX protected pancreatic cells against apoptosis induced by prolonged inhibition of ERK activities by preventing Bcl-X(L) downregulation, activation of caspases 3, 6, 8, and 9, and PARP cleavage and by inducing Bad phosphorylation (ser112). Taken together, our data demonstrate for the first time that cAMP is an inhibitor of cell cycle progression and apoptosis in human pancreatic cancer cells.  相似文献   

20.
Effect of cadmium on cell cycle progression in Chinese hamster ovary cells   总被引:4,自引:0,他引:4  
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号