首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian members of the classical transient receptor potential channel (TRPC) subfamily (TRPC1-7) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). Unlike most other TRP-related channels, which are inhibited by La(3+) and Gd(3+), currents through TRPC4 and TRPC5 are potentiated by La(3+). Because these differential effects of lanthanides on TRPC subtypes may be useful for clarifying the role of different TRPCs in native tissues, we characterized the potentiating effect in detail and localized the molecular determinants of potentiation by mutagenesis. Whole cell currents through TRPC5 were reversibly potentiated by micromolar concentrations of La(3+) or Gd(3+), whereas millimolar concentrations were inhibitory. By comparison, TRPC6 was blocked to a similar extent by La(3+) or Gd(3+) at micromolar concentrations and showed no potentiation. Dual effects of lanthanides on TRPC5 were also observed in outside-out patches. Even at micromolar concentrations, the single channel conductance was reduced by La(3+), but reduction in conductance was accompanied by a dramatic increase in channel open probability, leading to larger integral currents. Neutralization of the negatively charged amino acids Glu(543) and Glu(595)/Glu(598), situated close to the extracellular mouth of the channel pore, resulted in a loss of potentiation, and, for Glu(595)/Glu(598) in a modification of channel inhibition. We conclude that in the micromolar range, the lanthanide ions La(3+) and Gd(3+) have opposite effects on whole cell currents through TRPC5 and TRPC6 channels. The potentiation of TRPC4 and TRPC5 by micromolar La(3+) at extracellular sites close to the pore mouth is a promising tool for identifying the involvement of these isoforms in receptor-operated cation conductances of native cells.  相似文献   

2.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

3.
Classical electrophysiology and contemporary crystallography suggest that the activation gate of voltage-dependent channels is on the intracellular side, but a more extracellular "pore gate" has also been proposed. We have used the voltage dependence of block by extracellular Y(3+) as a tool to locate the activation gate of the alpha1G (Ca(V)3.1) T-type calcium channel. Y(3+) block exhibited no clear voltage dependence from -40 to +40 mV (50% block at 25 nM), but block was relieved rapidly by stronger depolarization. Reblock of the open channel, reflected in accelerated tail currents, was fast and concentration dependent. Closed channels were also blocked by Y(3+) at a concentration-dependent rate, only eightfold slower than open-channel block. When extracellular Ca(2+) was replaced with Ba(2+), the rate of open block by Y(3+) was unaffected, but closed block was threefold faster than in Ca(2+), suggesting the slower closed-block rate reflects ion-ion interactions in the pore rather than an extracellularly located gate. Since an extracellular blocker can rapidly enter the closed pore, the primary activation gate must be on the intracellular side of the selectivity filter.  相似文献   

4.
5.
Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.  相似文献   

6.
Using the lanthanide gadolinium (Gd(3+)) as a Ca(2+) replacing probe, we investigated the voltage dependence of pore blockage of Ca(V)1.2 channels. Gd(+3) reduces peak currents (tonic block) and accelerates decay of ionic current during depolarization (use-dependent block). Because diffusion of Gd(3+) at concentrations used (<1 microM) is much slower than activation of the channel, the tonic effect is likely to be due to the blockage that occurred in closed channels before depolarization. We found that the dose-response curves for the two blocking effects of Gd(3+) shifted in parallel for Ba(2+), Sr(2+), and Ca(2+) currents through the wild-type channel, and for Ca(2+) currents through the selectivity filter mutation EEQE that lowers the blocking potency of Gd(3+). The correlation indicates that Gd(3+) binding to the same site causes both tonic and use-dependent blocking effects. The apparent on-rate for the tonic block increases with the prepulse voltage in the range -60 to -45 mV, where significant gating current but no ionic current occurs. When plotted together against voltage, the on-rates of tonic block (-100 to -45 mV) and of use-dependent block (-40 to 40 mV) fall on a single sigmoid that parallels the voltage dependence of the gating charge. The on-rate of tonic block by Gd(3+) decreases with concentration of Ba(2+), indicating that the apparent affinity of the site to permeant ions is about 1 mM in closed channels. Therefore, we propose that at submicromolar concentrations, Gd(3+) binds at the entry to the selectivity locus and that the affinity of the site for permeant ions decreases during preopening transitions of the channel.  相似文献   

7.
Lanthanides such as La(3+) and Gd(3+) are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La(3+) and Gd(3+) on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 microM La(3+) (or Gd(3+)) through a 10-microm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 microM) of La(3+) (or Gd(3+)) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 microM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the L(beta') to P(beta') phase transition temperature of DPPC-MLV increased with an increase in La(3+) concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La(3+) concentration. Thereby, the interaction of La(3+) (or Gd(3+)) on the external monolayer membrane of the GUV induces a decrease in its area (A(ex)), whereas the area of the internal monolayer membrane (A(in)) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (DeltaA=A(ex)-A(in)).  相似文献   

8.
The arachidonate-regulated, Ca(2+)-selective ARC channels represent a novel receptor-activated pathway for the entry of Ca(2+) in nonexcitable cells that is entirely separate from the widely studied store-operated, Ca(2+) release-activated Ca(2+) channels. Activation of ARC channels occurs specifically at the low agonist concentrations typically associated with oscillatory Ca(2+) signals and appears to provide the predominant mode of Ca(2+) entry under these conditions (Mignen, O., Thompson, J. L., and Shuttleworth, T. J. (2001) J. Biol. Chem. 276, 35676-35683). In this study we demonstrate that ARC channels are present in a variety of different cell types including both cell lines and primary cells. Examination of their pharmacology revealed that currents through these channels are significantly inhibited by low concentrations (< 5 microm) of Gd(3+), are unaffected by 100 microm 2-aminoethyoxydiphenyl borane, and are not activated by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (100 microm). Their selectivity for Ca(2+) was assessed by determining the EC(50) for external Ca(2+) block of the monovalent currents observed in the absence of external divalent cations. The value obtained (150 nm) indicates that the Ca(2+) selectivity of ARC channels is extremely high. Examination of the ability of various fatty acids, including arachidonic acid, to activate the ARC channels demonstrated that activation does not reflect any nonspecific membrane fluidity or detergent effects, shows a high degree of specificity for arachidonic acid over other fatty acids (especially monounsaturated and saturated fatty acids), and is independent of any arachidonic acid metabolite. Moreover, studies using the charged analogue arachidonyl coenzyme A demonstrate that activation of the ARC channels reflects an action of the fatty acid specifically at the internal face of the plasma membrane. Whether this involves a direct action of arachidonic acid on the channel protein itself or an action on some intermediary molecule is, at present, unclear.  相似文献   

9.
Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants.  相似文献   

10.
Gbetagamma subunits are known to bind to and activate G-protein-activated inwardly rectifying K(+) channels (GIRK) by regulating their open probability and bursting behavior. Studying G-protein regulation of either native GIRK (I(KACh)) channels in feline atrial myocytes or heterologously expressed GIRK1/4 channels in Chinese hamster ovary cells and HEK 293 cells uncovered a novel Gbetagamma subunit mediated regulation of the inwardly rectifying properties of these channels. I(KACh) activated by submaximal concentrations of acetylcholine exhibited a approximately 2.5-fold stronger inward rectification than I(KACh) activated by saturating concentrations of acetylcholine. Similarly, the inward rectification of currents through GIRK1/4 channels expressed in HEK cells was substantially weakened upon maximal stimulation with co-expressed Gbetagamma subunits. Analysis of the outward current block underlying inward rectification demonstrated that the fraction of instantaneously blocked channels was reduced when Gbetagamma was over-expressed. The Gbetagamma induced weakening of inward rectification was associated with reduced potencies for Ba(2+) and Cs(+) to block channels from the extracellular side. Based on these results we propose that saturation of the channel with Gbetagamma leads to a conformational change within the pore of the channel that reduced the potency of extracellular cations to block the pore and increased the fraction of channels inert to a pore block in outward direction.  相似文献   

11.
Capacitative calcium entry or store-operated calcium entry in nonexcitable cells is a process whereby the activation of calcium influx across the plasma membrane is signaled by depletion of intracellular calcium stores. Transient receptor potential (TRP) proteins have been proposed as candidates for store-operated calcium channels. Human TRPC3 (hTRPC3), an extensively studied member of the TRP family, is activated through a phospholipase C-dependent mechanism, not by store depletion, when expressed in HEK293 cells. However, store depletion by thapsigargin is sufficient to activate hTRPC3 channels when expressed in DT40 avian B-lymphocytes. To gain further insights into the differences between hTRPC3 channels generated in these two expression systems and further understand the role of hTRPC3 in capacitative calcium entry, we examined the effect of two well characterized inhibitors of capacitative calcium entry, Gd3+ and 2-aminoethoxydiphenyl borane (2APB). We confirmed that in both DT40 cells and HEK293 cells, 1 microm Gd3+ or 30 microm 2APB completely blocked calcium entry due to receptor activation or store depletion. In HEK293 cells, 1 microm Gd3+ did not block receptor-activated hTRPC3-mediated cation entry, whereas 2APB had a partial (approximately 60%) inhibitory effect. Interestingly, store-operated hTRPC3-mediated cation entry in DT40 cells was also partially inhibited by 2APB, whereas 1 microm Gd3+ completely blocked store-operated hTRPC3 activity in these cells. Furthermore, the sensitivity of store-operated hTRPC3 channels to Gd3+ in DT40 cells was similar to the endogenous store-operated channels, with essentially 100% block of activity at concentrations as low as 0.1 microm. Finally, Gd3+ has a rapid inhibitory effect when added to fully developed hTRPC3-mediated calcium entry, suggesting a direct action of Gd3+ on hTRPC3 channels. The distinct action of these inhibitors on hTRPC3-mediated cation entry in these two cell types may result from their different modes of activation and may also reflect differences in basic channel structure.  相似文献   

12.
The hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of insulin secretion. GIP has been shown to increase adenylyl cyclase activity, elevate intracellular Ca(2+) levels, and stimulate a mitogen-activated protein kinase pathway in the pancreatic beta-cell. In the current study we demonstrate a role for arachidonic acid in GIP-mediated signal transduction. Static incubations revealed that both GIP (100 nm) and ATP (5 microm) significantly increased [(3)H]arachidonic acid ([(3)H]AA) efflux from transfected Chinese hamster ovary K1 cells expressing the GIP receptor (basal, 128 +/- 11 cpm/well; GIP, 212 +/- 32 cpm/well; ATP, 263 +/- 35 cpm/well; n = 4; p < 0.05). In addition, GIP receptors were shown for the first time to be capable of functionally coupling to AA production through Gbetagamma dimers in Chinese hamster ovary K1 cells. In a beta-cell model (betaTC-3), GIP was found to elicit [(3)H]AA release, independent of glucose, in a concentration-dependent manner (EC(50) value of 1.4 +/- 0.62 nm; n = 3). Although GIP did not potentiate insulin release under extracellular Ca(2+)-free conditions, it was still capable of elevating intracellular cAMP and stimulating [(3)H]AA release. Our data suggest that cAMP is the proximal signaling intermediate responsible for GIP-stimulated AA release. Finally, stimulation of GIP-mediated AA production was shown to be mediated via a Ca(2+)-independent phospholipase A(2). Arachidonic acid is therefore a new component of GIP-mediated signal transduction in the beta-cell.  相似文献   

13.
研究了镧、轧、镱及四种配合物对Ca~(2+)-ATP酶活性的影响.结果表明,低浓度的La~(3+),Gd~(3+)和Yb~(3+)对肌质网Ca~(2+)-ATP酶有激活作用;随着其浓度的增加,它们对酶活性的抑制程度增大;而La~(3+),Gd~(3+)和Yb~(3+)对纯化的Ca2~(+)-ATP酶则只有抑制作用;Gd─N─乙酰─缬氨酸和Yb─丙氨酰代丙氨酸配合物对肌质网膜和纯化的Ca~(2+)-ATP酶活性的影响与Gd~(3+)及Yb~(3+)类似,但其激活程度和抑制程度比Gd~(3+)及Yb~(3+)小;Gd─DTPA和Yb-DTPA对Ca2~(+)-ATP酶活性基本无影响。  相似文献   

14.
15.
I(Ks), a slowly activating delayed rectifier K(+) current through channels formed by the assembly of two subunits KCNQ1 (KvLQT1) and KCNE1 (minK), contributes to the control of the cardiac action potential duration. Coassembly of the two subunits is essential in producing the characteristic and physiologically critical kinetics of assembled channels, but it is not yet clear where or how these subunits interact. Previous investigations of external access to the KCNE1 protein in assembled I(Ks) channels relied on occlusion of the pore by extracellular application of TEA(+), despite the very low TEA(+) sensitivity (estimated EC(50) > 100 mM) of channels encoded by coassembly of wild-type KCNQ1 with the wild type (WT) or a series of cysteine-mutated KCNE1 constructs. We have engineered a high affinity TEA(+) binding site into the h-KCNQ1 channel by either a single (V319Y) or double (K318I, V319Y) mutation, and retested it for pore-delimited access to specific sites on coassembled KCNE1 subunits. Coexpression of either KCNQ1 construct with WT KCNE1 in Chinese hamster ovary cells does not alter the TEA(+) sensitivity of the homomeric channels (IC(50) approximately 0.4 mM [TEA(+)](out)), providing evidence that KCNE1 coassembly does not markedly alter the structure of the outer pore of the KCNQ1 channel. Coexpression of a cysteine-substituted KCNE1 (F54C) with V319Y significantly increases the sensitivity of channels to external Cd(2+), but neither the extent of nor the kinetics of the onset of (or the recovery from) Cd(2+) block was affected by [TEA(+)](o) at 10x the IC(50) for channel block. These data strongly suggest that access of Cd(2+) to the cysteine-mutated site on KCNE1 is independent of pore occlusion caused by TEA(+) binding to the outer region of the KCNE1/V319Y pore, and that KCNE1 does not reside within the pore region of the assembled channels.  相似文献   

16.
17.
Toxicological and cytophysiological aspects of lanthanides action   总被引:16,自引:0,他引:16  
Lanthanides, also called rare-earth elements, are an interesting group of 15 chemically active, mainly trivalent, f-electronic, silvery-white metals. In fact, lanthanides are not as rare as the name implies, except for promethium, a radioactive artificial element not found in nature. The mean concentrations of lanthanides in the earth's crust are comparable to those of life-important elements like iodine, cobalt and selenium. Many lanthanide compounds show particular magnetic, catalytic and optic properties, and that is why their technical applications are so extensive. Numerous industrial sources enable lanthanides to penetrate into the human body and therefore detailed toxicological studies of these metals are necessary. In the liver, gadolinium selectively inhibits secretion by Kupffer cells and it decreases cytochrome P450 activity in hepatocytes, thereby protecting liver cells against toxic products of xenobiotic biotransformation. Praseodymium ion (Pr3+) produces the same protective effect in liver tissue cultures. Cytophysiological effects of lanthanides appear to result from the similarity of their cationic radii to the size of Ca2+ ions. Trivalent lanthanide ions, especially La3+ and Gd3+, block different calcium channels in human and animal cells. Lanthanides can affect numerous enzymes: Dy3+ and La3+ block Ca2+-ATPase and Mg2+-ATPase, while Eu3+ and Tb3+ inhibit calcineurin. In neurons, lanthanide ions regulate the transport and release of synaptic transmitters and block some membrane receptors, e.g. GABA and glutamate receptors. It is likely that lanthanides significantly and uniquely affect biochemical pathways, thus altering physiological processes in the tissues of humans and animals.  相似文献   

18.
We have reported that a transient treatment of hippocampal neurons with alpha-tocopherol induced a long-lasting protection against oxidative damage mediated by Fe(2+) ions. This protection required protein synthesis. Here, we have studied whether this "hyposensitivity" to oxidative stress could be linked to an altered Ca(2+) homeostasis. Fe(2+) ions triggered a Ca(2+) entry which was required for Fe(2+) ion-induced toxicity. This influx was sensitive to blockers of TRP-like nonspecific Ca(2+) channels, including Ruthenium Red, La(3+), and Gd(3+) ions which also prevented the Fe(2+) ion-induced toxicity and oxidative stress as revealed by protein carbonylation status. The pretreatment with alpha-tocopherol resulted in a reduction of the Ca(2+) increase induced by Fe(2+) ions and masked the blocking effect of La(3+) ions. Moreover, such a pretreatment reduced the capacitive Ca(2+) entries (CCE) observed after metabotropic glutamate receptor stimulation, which are known to involve TRP-like channels. By contrast, in a model of "hypersensitivity" to oxidative stress obtained by chronic stimulation of glucocorticoid receptors, we observed an exacerbation of the various effects of Fe(2+) ions, i.e., cellular toxicity and Ca(2+) increase, and the glutamate-stimulated CCE. Therefore, we conclude that the long-lasting neuroprotection induced by alpha-tocopherol pretreatment likely results from an attenuation of Ca(2+) entries via TRP-like channels.  相似文献   

19.
Fractalkine, the first member of the CX(3)C chemokine family, induces leukocyte chemotaxis through activation of its high affinity receptor, CX(3)CR1. Like other chemokine receptors, CX(3)CR1 is coupled to a pertussis toxin-sensitive heterotrimeric G(i) protein, which is necessary for rapid rise in the concentration of intracellular calcium. Using a Chinese hamster ovary cell line stably transfected with the CX(3)CR1 receptor, we show that the source of calcium mobilized by fractalkine stimulation is the extracellular pool. Calcium influx is blocked by extracellular calcium chelators, as well as by divalent heavy metals such as Ni(2+), Co(2+), and Cd(2+) without affecting the integrity of intracellular stores. Remarkably, selective phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin and LY294002, abolish the wave extracellular calcium, suggesting that an active PI3K is necessary for this event. The influx of extracellular calcium is in turn required to trigger the activation of the p42/44 mitogen-activated protein/extracellular signal-regulated kinase pathway, but is not necessary for other signals downstream to PI3K, such as phosphorylation of Akt. The potential role of this signaling cascade in fractalkine-mediated chemotaxis is discussed.  相似文献   

20.
Evidence in the literature implicating both Ras-like Ras (R-Ras) and intracellular Ca(2+) in programmed cell death and integrin-mediated adhesion prompted us to investigate the possibility that R-Ras alters cellular Ca(2+) handling. Chinese hamster ovary cells expressing the cholecystokinin (CCK)-A receptor were loaded with indo-1 to study the effects of constitutively active V38R-Ras and dominant negative N43R-Ras on the kinetics of the thapsigargin (Tg)- and CCK(8)-induced Ca(2+) rises using high speed confocal microscopy. In the absence of extracellular Ca(2+), both 1 microm Tg, a potent and selective inhibitor of the Ca(2+) pump of the intracellular Ca(2+) store, and 100 nm CCK(8) evoked a transient rise in Ca(2+), the size of which was decreased significantly after expression of V38R-Ras. At 0.1 nm, CCK(8) evoked periodic Ca(2+) rises. The frequency of these Ca(2+) oscillations was reduced significantly in V38R-Ras-expressing cells. In contrast to V38R-Ras, N43R-Ras did not alter the kinetics of the Tg- and CCK(8)-induced Ca(2+) rises. The present findings are compatible with the idea that V38R-Ras expression increases the passive leak of Ca(2+) of the store leading to a decrease in Ca(2+) content of this store, which, in turn, leads to a decrease in frequency of the CCK(8)-induced cytosolic Ca(2+) oscillations. The effect of V38R-Ras on the Ca(2+) content of the intracellular Ca(2+) store closely resembles that of the antiapoptotic protein Bcl-2 observed earlier. Together with reports on the role of dynamic Ca(2+) changes in integrin-mediated adhesion, this leads us to propose that the reduction in endoplasmic reticulum Ca(2+) content may underlie the antiapoptotic effect of R-Ras, whereas the decrease in frequency of stimulus-induced Ca(2+) oscillations may play a role in the inhibitory effect of R-Ras on stimulus-induced cell detachment and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号