首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.  相似文献   

2.
In heterologous expression systems, dopamine transporter (DAT) cell-surface localization is reduced after relatively prolonged exposure to d-amphetamine (AMPH) or dopamine (DA), suggesting a role for substrate-mediated regulation of transporter function. Here, we investigated whether brief, repeated periods of substrate exposure modulated transporter function, first, in an in vitro model system and, second, in intact rat brain. In human DAT-expressing Xenopus laevis oocytes, repeated exposure to low micromolar concentrations of DA, AMPH or tyramine markedly reduced transport-mediated currents. This functional down-regulation was attenuated by inclusion of a protein kinase C (PKC) inhibitor and probably reflects DAT redistribution, as cell-surface [3H]WIN 35 428 binding was significantly lower following DA exposure. High-speed chronoamperometry was used to measure clearance of exogenously applied DA in dorsal striatum (STR) and nucleus accumbens (NAc) of anesthetized rats. In STR, frequent (every 2 min) applications of DA altered DA clearance parameters in a manner consistent with profound down-regulation of DAT function. Similar changes were not observed in NAc or after repeated vehicle (ascorbic acid) application. Together, our results suggest that brief, repeated periods of substrate exposure lead to rapid down-regulation of DAT activity and that this type of regulation can occur in vivo in STR, but not NAc.  相似文献   

3.
Dopamine (DA) D2 receptors regulate DA transporter (DAT) activity, and mediate some behavioral effects of amphetamine. DA clearance and amphetamine-stimulated locomotion are reduced in hypoinsulinemic [streptozotocin (STZ)-treated] rats, and these deficits are normalized by repeated treatment with amphetamine. Here, a role for D2 receptors in mediating amphetamine-induced normalization of these parameters was investigated. One week after a saline or STZ injection (50 mg/kg), rats were treated with amphetamine (1.78 mg/kg), raclopride (0.056 mg/kg), saline, or combinations thereof, every-other-day for 8 days with locomotor activity measured following each treatment. Conditioned place preference (CPP) for amphetamine and in vivo chronoamperometry to measure DA clearance were carried out on days 17 and 18, respectively, after STZ or saline. Baseline locomotion and DA clearance were significantly reduced in STZ-treated rats compared with control rats. In STZ-treated rats, amphetamine treatment normalized DA clearance, and restored the locomotor-stimulating effects of amphetamine. Raclopride prevented normalization of these parameters. Amphetamine produced CPP in both STZ-treated and control rats; raclopride significantly attenuated amphetamine-induced CPP in control and not in STZ-treated rats. These results support a role for D2 receptors in regulating DA transporter activity, and further demonstrate that D2 receptors contribute to changes in sensitivity to amphetamine in hypoinsulinemic rats.  相似文献   

4.

Background

The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake.

Methodology/Principal Findings

We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia.

Conclusions/Significance

Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to “the fast food lifestyle” creates a cycle of disordered eating that cements pathological changes in DA signaling leading to weight gain and obesity.  相似文献   

5.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.  相似文献   

6.
Amphetamine (AMPH) elicits its behavioral effects by acting on the dopamine (DA) transporter (DAT) to induce DA overflow into the synaptic cleft. Facilitated exchange diffusion is the classical model used to describe AMPH-induced DA efflux. This model hypothesizes that AMPH-induced DA efflux is mediated by DAT and results from the transport of AMPH into the cell followed by a counter movement of DA out to the extracellular compartment. To further characterize the action of AMPH, we used the patch clamp technique in the whole-cell configuration combined with amperometry on human embryonic kidney HEK-293 cells stably transfected with the human DAT (DAT cells). In DAT cells, AMPH-induced DAT-mediated currents were blocked by cocaine. We demonstrate that DA efflux mediated by DAT is voltage-dependent, electrogenic, and dependent on intracellular Na(+) concentration in the recording electrode. Intracellular Na(+) fluorescence, as measured by confocal microscopy using a Na(+)-sensitive dye, was enhanced by AMPH application. Furthermore, the ability of AMPH to induce DA efflux was regulated by intracellular Na(+) concentration and correlated with the size of the DAT-mediated, AMPH-induced ion flux across the plasma membrane. In the absence of intracellular Na(+) but the presence of high intracellular Cl(-), AMPH-induced inward currents elicited DA efflux proportionally to their dimension and duration. Thus, we propose that AMPH-induced DA efflux depends on two correlated transporter processes. First, AMPH binds to the DAT and is transported, thereby causing an inward current. Second, because of this AMPH-induced inward current, Na(+) becomes more available intracellularly to the DAT, thereby enhancing DAT-mediated reverse transport of DA.  相似文献   

7.
Amphetamine (AMPH) is a highly addictive drug of abuse which exhibits toxicity to dopaminergic neurons in long‐term abusers. Estrogen seems to show neuroprotection in dopamine (DA) deficit caused by AMPH. The present study was to investigate the effects of estradiol on the levels of striatal DA in ovariectomized (Ovx) rats treated with or without AMPH. Female rats were Ovx for 2 weeks before administration of AMPH (5 mg/kg/day, i.p.) with or without 17β‐estradiol benzoate (EB) (25 µg/kg/day, s.c.) for 7 days. The striatal tissues were collected, homogenized with DA mobile phase, and centrifuged. The concentrations of DA in the supernatants were detected by HPLC. The protein expressions of dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT‐2), and tyrosine hydroxylase (TH) were analyzed by Western blotting. The results indicated that AMPH could attenuate DA level significantly in striatum (P < 0.01). Comparing to control groups, administration of either EB or EB plus AMPH increased DA level (P < 0.01). The protein expression of striatal DAT was significant greater (P < 0.01) in rats treated with AMPH plus EB than AMPH treated animals. These results suggest that the DA levels in striatum can be enhanced by EB via an increase of DAT expression following administration of AMPH. J. Cell. Biochem. 108: 1318–1324, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Non-contingent experimenter-applied stimulation (nEAS) to the ventral mesencephalon, unlike contingent intracranial self-stimulation (ICSS), elicits high rates of general locomotion. This locomotion may be due to the nature of the presentation of stimulation, in that nEAS is non-contingent, while ICSS depends on a specific and focused response (e.g., bar pressing). Psychomotor stimulants also elicit high amounts of general locomotion, with the locomotion attributed to increased dopamine release. Interestingly, dopamine release decreases or is absent with repeated ICSS, but not nEAS. This suggests that the locomotion elicited by nEAS may be the result of DA release similar to that observed with psychomotor stimulants. To determine the relationship between locomotion induced by nEAS and psychomotor stimulants, locomotion elicited by nEAS was directly compared to that produced by cocaine, a psychomotor stimulant and indirect DA agonist. Six groups of rats were examined: (1) DA+ group: rats were implanted with a stimulating electrode in the ventral mesencephalon and activation of DA neurons was verified during surgery by monitoring DA release in the striatum; (2) DA- group: rats were also implanted with stimulating electrodes, but the location in the ventral mesencephalon did not elicit DA release; (3) 10-mg/kg cocaine group: rats were exposed to a low dose (10 mg/kg) of cocaine; (4) 40-mg/kg cocaine group: rats were exposed to a high dose (40 mg/kg) of cocaine; (5) saline group: rats were injected with saline; and (6) naive group: rats received no treatment. The topography of behavior was assessed in all rats during four periods: a pre-treatment baseline, treatment, early post-treatment, and a late post-treatment end point. The results suggest that locomotion elicited by nEAS was stereotypic, dependent upon DA release and similar, but not identical, to psychomotor stimulant-induced locomotion.  相似文献   

9.
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.  相似文献   

10.
The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate the role of the DAT C terminus in AMPH-evoked DA efflux using cell-permeant dominant-negative peptides. A peptide, which corresponded to the last 24 C-terminal residues of DAT (TAT-C24 DAT) and thereby contained the Ca2+-calmodulin-dependent protein kinase IIα (CaMKIIα) binding domain and the PSD-95/Discs-large/ZO-1 (PDZ)-binding sequence of DAT, was made membrane-permeable by fusing it to the cell membrane transduction domain of the HIV-1 Tat protein (TAT-C24WT). The ability of TAT-C24WT but not a scrambled peptide (TAT-C24Scr) to block the CaMKIIα-DAT interaction was supported by co-immunoprecipitation experiments in heterologous cells. In heterologous cells, we also found that TAT-C24WT, but not TAT-C24Scr, decreased AMPH-evoked 1-methyl-4-phenylpyridinium efflux. Moreover, chronoamperometric recordings in striatum revealed diminished AMPH-evoked DA efflux in mice preinjected with TAT-C24WT. Both in heterologous cells and in striatum, the peptide did not further inhibit efflux upon KN-93-mediated inhibition of CaMKIIα activity, consistent with a dominant-negative action preventing binding of CaMKIIα to the DAT C terminus. This was further supported by the ability of a peptide with perturbed PDZ-binding sequence, but preserved CaMKIIα binding (TAT-C24AAA), to diminish AMPH-evoked DA efflux in vivo to the same extent as TAT-C24WT. Finally, AMPH-induced locomotor hyperactivity was attenuated following systemic administration of TAT-C24WT but not TAT-C24Scr. Summarized, our findings substantiate that DAT C-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects.  相似文献   

11.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

12.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

13.
X M Guan  W J McBride 《Life sciences》1988,42(25):2625-2631
The effect of local pH on the in vivo efflux of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following administration of d-amphetamine (AMPH) was examined in the striatum of the anesthetized rat using two bilaterally placed push-pull cannulae. At both pH 7.3 and 6.4, the baseline efflux values for DA and DOPAC were approximately 0.2 and 25 pmoles/15 min, respectively. Subcutaneous injection of 2 mg/kg AMPH induced a 3-fold increase of DA release at pH 7.3 and a 21-fold increase of DA release at pH 6.4. In both cases, the maximum was reached at about 30 min after the drug administration. Following the administration of AMPH, the efflux of DOPAC was reduced to the same degree (20% of control values) under both pH conditions. In vitro data showed that the lower pH did not alter the recovery of DA or DOPAC. In addition, release of DA produced by local perfusion with 5 uM AMPH was also greater at the lower pH (50-fold increase over baseline) than at the physiological pH (10-fold increase over baseline). The stimulated DA release produced by local perfusion with 35 mM K+, however, was the same at both pH values. Preliminary experiments also indicated that there was a pH effect for AMPH-induced serotonin (5-HT) release but that the difference in the amount of 5-HT in the two media was not nearly as large as that obtained for DA. The markedly elevated level of extracellular DA at the lower pH might be due to a higher affinity of the DA uptake system for AMPH, thereby producing greater inhibition of DA uptake as well as enhanced DA release. The data also suggest an enhanced affinity of AMPH for 5-HT uptake sites at the lower pH.  相似文献   

14.
Amphetamine (AMPH) elicits its behavioral effects by acting on the dopamine (DA) transporter (DAT) to induce DA efflux into the synaptic cleft. We previously demonstrated that a human DAT construct in which the first 22 amino acids were truncated was not phosphorylated by activation of protein kinase C, in contrast to wild-type (WT) DAT, which was phosphorylated. Nonetheless, in all functions tested to date, which include uptake, inhibitor binding, oligomerization, and redistribution away from the cell surface in response to protein kinase C activation, the truncated DAT was indistinguishable from the full-length WT DAT. Here, however, we show that in HEK-293 cells stably expressing an N-terminal-truncated DAT (del-22 DAT), AMPH-induced DA efflux is reduced by approximately 80%, whether measured by superfusion of a population of cells or by amperometry combined with the patch-clamp technique in the whole cell configuration. We further demonstrate in a full-length DAT construct that simultaneous mutation of the five N-terminal serine residues to alanine (S/A) produces the same phenotype as del-22—normal uptake but dramatically impaired efflux. In contrast, simultaneous mutation of these same five serines to aspartate (S/D) to simulate phosphorylation results in normal AMPH-induced DA efflux and uptake. In the S/A background, the single mutation to Asp of residue 7 or residue 12 restored a significant fraction of WT efflux, whereas mutation to Asp of residues 2, 4, or 13 was without significant effect on efflux. We propose that phosphorylation of one or more serines in the N-terminus of human DAT, most likely Ser7 or Ser12, is essential for AMPH-induced DAT-mediated DA efflux. Quite surprisingly, N-terminal phosphorylation shifts DAT from a “reluctant” state to a “willing” state for AMPH-induced DA efflux, without affecting inward transport. These data raise the therapeutic possibility of interfering selectively with AMPH-induced DA efflux without altering physiological DA uptake.  相似文献   

15.
Amphetamine (AMPH) and cocaine are indirect dopamine agonists that activate multiple signaling cascades in the striatum. Each cascade has a different subcellular location and duration of action that depend on the strength of the drug stimulus. In addition to activating D1 dopamine-Gs-coupled-protein kinase A signaling, acute psychostimulant administration activates extracellular-regulated kinase transiently in striatal cells; conversely, inhibition of extracellular-regulated kinase phosphorylation decreases the ability of psychostimulants to elevate locomotor behavior and opioid peptide gene expression. Moreover, a drug challenge in rats with a drug history augments and prolongs striatal extracellular-regulated kinase phosphorylation, possibly contributing to behavioral sensitization. In contrast, AMPH activates phosphoinositide-3 kinase substrates, like protein kinase B/Akt, only in the nuclei of striatal cells but this transient increase induced by AMPH is followed by a delayed decrease in protein kinase B/Akt phosphorylation whether or not the rats have a drug history, suggesting that the phosphoinositide-3 kinase pathway is not essential for AMPH-induced behavioral sensitization. Chronic AMPH or cocaine also alters the regulation of inhibitory G protein-coupled receptors in the striatum, as evident by a prolonged decrease in the level of regulator of G protein signaling 4 after non-contingent or contingent (self-administered) drug exposure. This decrease is exacerbated in behaviorally sensitized rats and reversed by re-exposure to a cocaine-paired environment. A decrease in regulator of G protein signaling 4 levels may weaken its interactions with metabotropic glutamate receptor 5, Galphaq, and phospholipase C beta that may enhance drug-induced signaling. Alteration of these protein-protein interactions suggests that the striatum responds to psychostimulants with a complex molecular repertoire that both modulates psychomotor effects and leads to long-term neuroadaptations.  相似文献   

16.
The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca2+]i from internal stores compared with AMPH. [Ca2+]i responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca2+]i and for the enhanced effects of METH on [Ca2+]i elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca2+ responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH.The dopamine transporter (DAT)3 is a main target for psychostimulants, such as d-amphetamine (AMPH), methamphetamine (METH), cocaine (COC), and methylphenidate (Ritalin®). DAT is the major clearance mechanism for synaptic dopamine (DA) (1) and thereby regulates the strength and duration of dopaminergic signaling. AMPH and METH are substrates for DAT and competitively inhibit DA uptake (2, 3) and release DA through reverse transport (49). AMPH- and METH-induced elevations in extracellular DA result in complex neurochemical changes and profound psychiatric effects (2, 1016). Despite their structural and pharmacokinetic similarities, a recent National Institute on Drug Abuse report describes METH as a more potent stimulant than AMPH with longer lasting effects at comparable doses (17). Although the route of METH administration and its availability must contribute to the almost four times higher lifetime nonmedical use of METH compared with AMPH (18), there may also be differences in the mechanisms that underlie the actions of these two drugs on the dopamine transporter.Recent studies by Joyce et al. (19) have shown that compared with d-AMPH alone, the combination of d- and l-AMPH in Adderall® significantly prolonged the time course of extracellular DA in vivo. These experiments demonstrate that subtle structural features of AMPH, such as chirality, can affect its action on dopamine transporters. Here we investigate whether METH, a more lipophilic analog of AMPH, affects DAT differently than AMPH, particularly in regard to stimulated DA efflux.METH and AMPH have been reported as equally effective in increasing extracellular DA levels in rodent dorsal striatum (dSTR), nucleus accumbens (NAc) (10, 14, 20), striatal synaptosomes, and DAT-expressing cells in vitro (3, 6). John and Jones (21), however, have recently shown in mouse striatal and substantia nigra slices, that AMPH is a more potent inhibitor of DA uptake than METH. On the other hand, in synaptosomes METH inhibits DA uptake three times more effectively than AMPH (14), and in DAT-expressing COS-7 cells, METH releases DA more potently than AMPH (EC50 = 0.2 μm for METH versus EC50 = 1.7 μm for AMPH) (5). However, these differences do not hold up under all conditions. For example, in a study utilizing C6 cells, the disparity between AMPH and METH was not found (12).The variations in AMPH and METH data extend to animal models. AMPH- and METH-mediated behavior has been reported as similar (22), lower (20), or higher (23) for AMPH compared with METH. Furthermore, although the maximal locomotor activation response was less for METH than for AMPH at a lower dose (2 mg/kg, intraperitoneal), both drugs decreased locomotor activity at a higher dose (4 mg/kg) (20). In contrast, in the presence of a salient stimuli, METH is more potent in increasing the overall magnitude of locomotor activity in rats yet is equipotent with AMPH in the absence of these stimuli (23).The simultaneous regulation of DA uptake and efflux by DAT substrates such as AMPH and METH, as well as the voltage dependence of DAT (24), may confound the interpretation of existing data describing the action of these drugs. Our biophysical approaches allowed us to significantly decrease the contribution of DA uptake and more accurately determine DAT-mediated DA efflux with millisecond time resolution. We have thus exploited time-resolved, whole-cell voltage clamp in combination with in vitro and in vivo microamperometry and Ca2+ imaging to compare the impact of METH and AMPH on DAT function and determine the consequence of these interactions on cell physiology.We find that near the resting potential, METH is more effective than AMPH in stimulating DAT to release DA. In addition, at efficacious concentrations METH generates more current, greater DA efflux, and higher Ca2+ release from internal stores than AMPH. Both METH-induced or the lesser AMPH-induced increase in intracellular Ca2+ are independent of membrane potential. The additional Ca2+ response induced by METH requires intact phosphorylation sites in the N-terminal domain of DAT. Finally, our in vivo voltammetry data indicate that METH inhibits clearance of locally applied DA more effectively than AMPH in the rat nucleus accumbens, which plays an important role in reward and addiction, but not in the dorsal striatum, which is involved in a variety of cognitive functions. Taken together these data imply that AMPH and METH have distinguishable effects on DAT that can be shown both at the molecular level and in vivo, and are likely to be implicated in the relative euphoric and addictive properties of these two psychostimulants.  相似文献   

17.
Hypothalamic neuropeptides, including neuropeptide Y (NPY) and proopiomelanocortin (POMC), have been found to control the appetite‐suppressing effect of amphetamine (AMPH). In this study, we have examined whether dopamine receptor (DAR), phosphatidylinositol 3‐kinase (PI3K) and nuclear factor‐kappaB (NF‐κB) are involved in AMPH's action. We administered AMPH to rats once a day for 4 days and assessed and compared changes in hypothalamic NPY, melanocortin receptor 4 (MC4R), PI3K, pAkt and NF‐κB expression. We found that the inhibition of DAR increased NPY, but decreased MC4R, PI3K and NF‐κB expression, compared with AMPH‐treated rats. Moreover, MC4R, PI3K, pAkt and NF‐κB increased with the maximum response on Day 2, which was consistent with the response of feeding behavior, but was opposite to the expression of NPY. Furthermore, we found that the intracerebroventricular infusion of the PI3K inhibitor or NF‐κB antisense could attenuate AMPH‐induced anorexia, and partially reverse the expression of NPY, MC4R, PI3K, Akt and NF‐κB back toward a normal level. We, therefore, suggest that DAR–PI3K–NF‐κB signaling in the hypothalamus plays functional roles in the modulation of NPY and POMC neurotransmissions and in the control of AMPH‐evoked appetite suppression.  相似文献   

18.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

19.
CART peptide has been shown to regulate the actions of psychomotor stimulants. Here we have further investigated the role of the biologically active CART 55-102 peptide in the nucleus accumbens (NAcc) in the expression of behavioral sensitization by amphetamine (AMPH). Rats were pre-exposed 5 times to either saline or AMPH (1 mg/kg, i.p.). After 2 weeks of withdrawal, rats were microinjected into the NAcc with saline or CART 55-102 (1.0, or 2.5 microg/0.5 microl/side) followed by AMPH challenge (1 mg/kg, i.p.). The enhanced increase of locomotion and rearing produced by repeated AMPH pre-exposures was dose-dependently inhibited by microinjection into the NAcc of CART 55-102 peptide. These results indicate that CART 55-102 peptide in the NAcc can play a compensatory inhibitory role in the expression of behavioral sensitization by AMPH and further suggest that CART peptide may be a useful target to control the drug addiction by psychomotor stimulants.  相似文献   

20.
Neurochemical alterations, which may be associated with the development of diabetic retinal dysfunction, were investigated using streptozotocin (STZ)-induced hyperglycemia in rats. Young male Wistar rats, weighing 100-150 g, were made diabetic with daily intraperitoneal injections of STZ (30 mg/kg) for 5 days. This treatment caused a continuous hyperglycemia (400-600 mg/dl) and suppressed gain in body weight. Nine weeks after the STZ treatment, a significant increment in retinal valine and a decline in phenylalanine were noted, while the concentrations of other neuroactive amino acids, such as gamma-aminobutyric acid and aspartic acid, in the retina remained unchanged. On the other hand, the concentration of retinal dopamine (DA) was found to decrease significantly from the third week of hyperglycemia, when [3H]spiperone binding showed a tendency to increase in the retinal particulate fraction. However, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase (AADC) and the uptake of [3H]tyrosine showed no alteration in the retina of diabetic rats. The accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) in vivo in the retina of diabetic rats, measured following the administration of the AADC inhibitor m-hydroxybenzyl-hydrazine (100 mg/kg i.p.), was also unchanged. Although [3H]DA uptake by retinal tissue was similar in control and diabetic animals, the spontaneous efflux of [3H]DA from the retina was found to be significantly accelerated in STZ-treated animals. In addition, the release of preloaded [3H]DA, elicited by repeated photic stimulation, was significantly attenuated in retina from diabetic rats. These results suggest that an accelerated efflux of DA, possibly leading to the depletion of DA from the retinal DA system, may account for early retinal dysfunctions known to occur in diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号