首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Phytomedicine》2014,21(11):1273-1280
Antiviral agents frequently applied for treatment of herpesvirus infections include acyclovir and its derivatives. The antiviral effect of a triterpene extract of birch bark and its major pentacyclic triterpenes, i.e. betulin, lupeol and betulinic acid against acyclovir-sensitive and acyclovir-resistant HSV type 1 strains was examined. The cytotoxic effect of a phytochemically defined birch bark triterpene extract (TE) as well as different pentacyclic triterpenes was analyzed in cell culture, and revealed a moderate cytotoxicity on RC-37 cells. TE, betulin, lupeol and betulinic acid exhibited high levels of antiviral activity against HSV-1 in viral suspension tests with IC50 values ranging between 0.2 and 0.5 μg/ml. Infectivity of acyclovir-sensitive and clinical isolates of acyclovir-resistant HSV-1 strains was significantly reduced by all tested compounds and a direct concentration- and time-dependent antiherpetic activity could be demonstrated. In order to determine the mode of antiviral action, TE and the compounds were added at different times during the viral infection cycle. Addition of these drugs to uninfected cells prior to infection or to herpesvirus-infected cells during intracellular replication had low effect on virus multiplication. Minor virucidal activity of triterpenes was observed, however both TE and tested compounds exhibited high anti-herpetic activity when viruses were pretreated with these drugs prior to infection. Pentacyclic triterpenes inhibit acyclovir-sensitive and acyclovir-resistant clinical isolates of HSV-1 in the early phase of infection.  相似文献   

2.
The X protein (HBX) of the hepatitis B virus (HBV) is not essential for the HBV life cycle in vitro but is important for productive infection in vivo. Our previous study suggests that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. With the woodchuck model, we demonstrated that the X-deficient mutants of woodchuck hepatitis virus (WHV) are not completely replication defective, possibly behaving like attenuated viruses. In the present study, we analyzed the effects of the proteasome inhibitors on the replication of wild-type and X-negative HBV and WHV. Recombinant adenoviruses or baculoviruses expressing replicating HBV or WHV genomes have been developed as a robust and convenient system to study viral replication in tissue culture. In cells infected with either the recombinant adenovirus-HBV or baculovirus-WHV, the replication level of the X-negative construct was about 10% of that of the wild-type virus. In the presence of proteasome inhibitors, the replication of the wild-type virus was not affected, while the replication of the X-negative virus of either HBV or WHV was enhanced and restored to the wild-type level. Our data suggest that HBX affects hepadnavirus replication through a proteasome-dependent pathway.  相似文献   

3.
Escherichia coli endotoxin (lipopolysaccharide) was shown to increase glycogenolysis in the perfused liver 2-3-fold. In isolated parenchymal liver cells, however, endotoxin did not influence glycogenolysis, whereas stimulation by endotoxin of glycogenolysis in the perfused liver could be blocked by aspirin. This suggests that the effect of endotoxin on liver glycogenolysis is mediated by eicosanoids. The amount of prostaglandin D2 (which is the major prostanoid formed by Kupffer cells) in the liver perfusates was increased 5-fold upon endotoxin addition, with a time course which preceded the increase in glucose output. It is concluded that endotoxin stimulates glycogenolysis in the liver by stimulating prostaglandin D2 release from Kupffer cells, with a subsequent activation of glycogenolysis in parenchymal liver cells. This mechanism of intercellular communication may be designed to provide the carbohydrate source of energy necessary for the effective destruction of invaded microorganisms, by phagocytic cells, including the Kupffer cells.  相似文献   

4.
Metazoan replication-dependent histone mRNAs do not have a poly(A) tail but end instead in a conserved stem-loop structure. Efficient translation of these mRNAs is dependent on the stem-loop binding protein (SLBP). Here we explore the mechanism by which SLBP stimulates translation in vertebrate cells, using the tethered function assay and analyzing protein-protein interactions. We show for the first time that translational stimulation by SLBP increases during oocyte maturation and that SLBP stimulates translation at the level of initiation. We demonstrate that SLBP can interact directly with subunit h of eIF3 and with Paip1; however, neither of these interactions is sufficient to mediate its effects on translation. We find that Xenopus SLBP1 functions primarily at an early stage in the cap-dependent initiation pathway, targeting small ribosomal subunit recruitment. Analysis of IRES-driven translation in Xenopus oocytes suggests that SLBP activity requires eIF4E. We propose a model in which a novel factor contacts eIF4E bound to the 5' cap and SLBP bound to the 3' end simultaneously, mediating formation of an alternative end-to-end complex.  相似文献   

5.
RBP16 is an abundant RNA binding protein from Trypanosoma brucei mitochondria that affects both RNA editing and stability. We report here experiments aimed at elucidating the mechanism of RBP16 function in RNA editing. In in vitro RNA editing assays, recombinant RBP16 is able to significantly stimulate insertion editing of both CYb and A6 pre-mRNAs. Enhancement of in vitro editing activity occurs at, or prior to, the step of pre-mRNA cleavage, as evidenced by increased accumulation of pre-mRNA 3' cleavage products in the presence of RBP16. Mutated RBP16 that is severely compromised in cold shock domain (CSD)-mediated RNA binding was able to enhance editing to levels comparable to the wild-type protein in some assays at the highest RBP16 levels tested. However, at low RBP16 concentrations or in assays with native, oligo(U)-tail-bearing gRNAs, editing stimulation by mutant RBP16 was somewhat compromised. Together, these results indicate that both the N-terminal CSD and C-terminal RGG RNA binding domains of RBP16 are required for maximal editing stimulation. Finally, the relaxed specificity of RBP16 for stimulation of both CYb and A6 editing in vitro implicates additional specificity factors that account for the strict CYb specificity of RBP16 action in editing in vivo. Our results constitute the first report of any putative RNA editing accessory factor eliciting an effect on editing in vitro. Overall, these results support a novel accessory role for RBP16 in U insertion editing.  相似文献   

6.
Macrophages infected with HIV-1 produce high levels of M-CSF and macrophage-inflammatory protein-1alpha (MIP-1alpha). M-CSF facilitates the growth and differentiation of macrophages, while the chemotactic properties of MIP-1alpha attract both T lymphocytes and macrophages to the site of HIV infection. Studies described in this work indicate M-CSF may function in an autocrine/paracrine manner to sustain HIV replication, and data suggest possible therapeutic strategies for decreasing viral load following HIV infection. We show that macrophage infection with measles virus or respiratory syncytial virus, in contrast to HIV-1, results in production of MIP-1alpha, but not M-CSF. Thus, M-CSF appears to be specifically produced upon infection of macrophages with HIV-1. Furthermore, addition of M-CSF antagonists to HIV-1-infected macrophages, including anti-M-CSF monoclonal or polyclonal Abs or soluble M-CSF receptors, dramatically inhibited HIV-1 replication and reduced production of MIP-1alpha. Our results suggest that biologic antagonists for M-CSF may represent novel strategies for inhibiting the spread of HIV-1 by 1) blocking virus replication in macrophages, 2) reducing recruitment of HIV-susceptible T cells and macrophages by MIP-1alpha, and 3) preventing the establishment and maintenance of infected macrophages as a reservoir for HIV.  相似文献   

7.
8.
The cdc21+ gene of Schizosaccharomyces pombe was originally identified in a screen for cdc mutants affecting S phase and nuclear division. Here we show that the cdc21+ gene product belongs to a family of proteins implicated in DNA replication. These include the Saccharomyces cerevisiae MCM2 and MCM3 proteins, which are needed for the efficient function of certain replication origins, and S.cerevisiae CDC46, which is required for the initiation of chromosome replication. The cdc21 mutant is defective in the mitotic maintenance of some plasmids, like mcm2 and mcm3. The mutant arrests with a single nucleus containing two genome equivalents of DNA, and maintains a cytoplasmic microtubular configuration. Activation of most, but not all, replication origins in the mutant may result in failure to replicate a small proportion of the genome, and this could explain the arrest phenotypes. Using the polymerase chain reaction technique, we have identified new cdc21(+)-related genes in S.cerevisiae, S.pombe and Xenopus laevis. Our results suggest that individual members of the cdc21(+)-related family are highly conserved in evolution.  相似文献   

9.
The matrix domain (MA) is important for targeting of human immunodeficiency virus type 1 Gag assembly to the plasma membrane, envelope incorporation into virions, preintegration complex import into the nucleus, and nuclear export of viral RNA. Myristylation and phosphorylation are key regulatory events for MA function. Previous studies have indicated that MA phosphorylation at serine (Ser) residues is important for viral replication. This study defines the molecular mechanisms of virus particle assembly and infectivity through a detailed study of the role of MA serine phosphorylation. We show that the combined mutation of Ser residues at positions 9, 67, 72, and 77 impairs viral infectivity in dividing and nondividing cells, although the assembly of these Ser mutant viruses is comparable to that of wild-type virus. This defect can be rescued by pseudotyping these mutant viruses with vesicular stomatitis virus G protein, suggesting that these serine residues are critical in an early postentry step of viral infection. The phosphorylation level of MA in defective mutant viruses was severely reduced compared to that of the wild type, suggesting that phosphorylation of Ser-9, -67, -72, and -77 is important for an early postentry step during virus infection.  相似文献   

10.
The urgent need for efficacious drugs to treat chronic hepatitis C virus (HCV) infection requires a concerted effort to develop inhibitors specific for virally encoded enzymes. We demonstrate that 2'-C-methyl ribonucleosides are efficient chain-terminating inhibitors of HCV genome replication. Characterization of drug-resistant HCV replicons defined a single S282T mutation within the active site of the viral polymerase that conferred loss of sensitivity to structurally related compounds in both replicon and isolated polymerase assays. Biochemical analyses demonstrated that resistance at the level of the enzyme results from a combination of reduced affinity of the mutant polymerase for the drug and an increased ability to extend the incorporated nucleoside analog. Importantly, the combination of these agents with interferon-alpha results in synergistic inhibition of HCV genome replication in cell culture. Furthermore, 2'-C-methyl-substituted ribonucleosides also inhibited replication of genetically related viruses such as bovine diarrhea virus, yellow fever, and West African Nile viruses. These observations, together with the finding that 2'-C-methyl-guanosine in particular has a favorable pharmacological profile, suggest that this class of compounds may have broad utility in the treatment of HCV and other flavivirus infections.  相似文献   

11.
Peripheral blood mononuclear cells (PBMCs) from cattle vaccinated with Bacillus Calmette-Guerin (BCG) were obtained and expanded in vitro by incubation with purified protein derivative. The ability of these cells to modulate the replication of virulent Mycobacterium bovis in autologous-infected macrophages was compared to cells from non-vaccinated controls. Cells from non-vaccinated animals were shown to confer a significant degree of mycobacteriostatic activity to autologous-infected macrophages. This activity was not inhibited by including a neutralizing antibody versus interferon-gamma (IFN-gamma), and was dependent on direct contact between PBMCs and infected macrophages. Addition of autologous PBMCs from BCG-vaccinated cattle was shown to significantly enhance macrophage resistance to M. bovis, and this increased macrophage resistance was partly abrogated by including a neutralizing antibody to IFN-gamma. Addition of T cells from non-vaccinated animals to infected macrophages was associated with a modest increase in macrophage release of TNF-alpha and nitric oxide, whereas PBMCs from vaccinated animals increased very significantly the release of these factors. Neutralization of nitric oxide (NO), by inclusion of monomethyl-L-arginine, significantly diminished the ability of PBMCs from vaccinated animals to enhance macrophage resistance to M. bovis, but had no impact on the ability of T cells from naive animals to modulate macrophage function. The ability of naive cells to increase macrophage anti-M. bovis activity was largely mediated by CD4+ T cells, whereas both CD4+ T cells and CD8+ T cells conferred macrophage resistance to M. bovis in vaccinated animals. These data highlight the role of IFN-gamma and NO in the immune resistance of cattle to M. bovis.  相似文献   

12.
Abnormal production of inflammatory cytokines and chemokines is a key feature of bacterial endotoxin, lipopolysaccharide (LPS)-induced inflammation, and cytotoxicity; however, the mechanisms regulating production of inflammatory markers remain unclear. Herein, we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR; AKR1B3) modulates NF-kappaB-dependent activation of inflammatory cytokines and chemokines in mouse serum, liver, heart, and spleen. Pharmacological inhibition or small interfering RNA ablation of AR prevented the biosynthesis of tumor necrosis factor-alpha, interleukin 1beta, interleukin-6, macrophage-chemoattractant protein-1, and cyclooxygenase-2 and prostaglandin E(2) in LPS-activated RAW264.7 murine macrophages. The AR inhibition or ablation significantly attenuated LPS-induced activation of protein kinase C (PKC) and phospholipase C (PLC), nuclear translocation of NF-kappaB, and phosphorylation and proteolytic degradation of IkappaBalpha in macrophages. Furthermore, treatment of macrophages with 4-hydroxy-trans-2-nonenal (HNE), and cell-permeable esters of glutathionyl-4-hydroxynonanal (GS-HNE) and glutathionyl-1,4-dihydroxynonane (GS-DHN) activated NF-kappaB and PLC/PKC. Pharmacological inhibition or antisense ablation of AR that catalyzes the reduction of GS-HNE to GS-DHN prevented PLC, PKC, IKKalpha/beta, and NF-kappaB activation caused by HNE and GS-HNE, but not by GS-DHN, suggesting that reduced GS-lipid aldehydes catalyzed by AR propagate LPS-induced production of inflammatory markers. Collectively, these data provide evidence that inhibition of AR may be a significant therapeutic approach in preventing bacterial endotoxin-induced sepsis and tissue damage.  相似文献   

13.
The replication of positive-strand RNA viral genomes involves various cis-acting RNA sequences. Generally, regulatory RNA sequences are present at or near genomic termini; however, internal replication elements (IREs) also exist. Here we report the structural and functional characterization of an IRE present in the readthrough portion of the p92 polymerase gene of Tomato bushy stunt virus. Analysis of this element in the context of a noncoding defective interfering RNA revealed a functional core structure composed of two noncontiguous segments of sequence that interact with each other to form an extended helical conformation. IRE activity required maintenance of several base-paired sections as well as two distinct structural features: (i) a short, highly conserved segment that can potentially form two different and mutually exclusive structures and (ii) an internal loop that contains a critical CC mismatch. The IRE was also shown to play an essential role within the context of the viral genome. In vivo analysis with novel RNA-based temperature-sensitive genomic mutants and translationally active subgenomic viral replicons revealed the following about the IRE: (i) it is active in the positive strand, (ii) it is dispensable late in the viral RNA replication process, and (iii) it is functionally inhibited by active translation over its sequence. Together, these results suggest that IRE activity is required in the cytosol at an early step in the viral replication process, such as template recruitment and/or replicase complex assembly.  相似文献   

14.
Only five monoclonal antibodies (MAbs) neutralizing a broad range of primary isolates (PI) have been identified up to now. We have found that some MAbs with no neutralizing activities according to the "conventional" neutralization assay, involving phytohemagglutinin-stimulated peripheral blood mononuclear cells as targets, efficiently inhibit the replication of human immunodeficiency virus type 1 (HIV-1) PI in macrophages and immature dendritic cells (iDC). The mechanism of inhibition is distinct from the neutralization of infectivity occurring via Fab fragments and involves the interaction of the F portion with the FcgammaRs present on macrophages and iDC. We propose that, if such nonneutralizing inhibitory antibodies limit mucosal HIV transmission, they should be induced by vaccination.  相似文献   

15.
Platelet secretory products were shown to modulate the interaction between lipoproteins and their receptors on macrophages. Preincubation of macrophages for 2 h at 37 degrees C with platelet conditioned medium (PCM), followed by its removal and a further 5-h incubation in the presence of oxidized-LDL (Ox-LDL), resulted in increased cellular degradation of Ox-LDL (34%), stimulation of cellular cholesterol esterification (31%), and mass accumulation of esterified and nonesterified cholesterol (25% and 41%, respectively). These effects were found to be the result of a PCM-mediated increase in the number of Ox-LDL receptors on macrophages. PCM was shown to interact with the macrophage scavenger receptor. Enhanced Ox-LDL uptake by macrophages preincubated with PCM could not be reproduced when PCM remained in the incubation medium. Maintenance of PCM in the incubation medium reduced Ox-LDL uptake by macrophages (40%) and was shown to be PCM dose-dependent. Whereas incubation at 37 degrees C demonstrated enhanced uptake of Ox-LDL, preincubation of macrophages with PCM at 4 degrees C exhibited a 64% reduction in Ox-LDL-mediated cellular cholesterol esterification. Thus, PCM internalization by macrophages after its binding to the scavenger receptor is required to promote the enhancing effect of PCM on Ox-LDL uptake by macrophages. PCM activity was associated with platelet degranulation, and was recovered in the protein fraction of PCM. It was found to be heat- and trypsin-labile with a molecular weight greater than 25,000. PCM obtained from platelets derived from a patient with alpha granules deficiency failed to enhance the uptake of Ox-LDL by macrophages, suggesting that the active protein-like factor in PCM originated from platelet alpha granules. These results indicate that a platelet-secreted protein-like factor can modulate macrophage uptake of Ox-LDL with subsequent effect on foam cell formation.  相似文献   

16.
Classically activated macrophages (CAMphi) have been described as a major effector cell on the host's innate immunities. However, CAMphi are not generated in immunocompromised hosts whose alternatively activated macrophages (AAMphi) predominate. In this study, the mechanism by which AAMphi suppress the ability of resident macrophages (RMphi) to generate CAMphi was investigated. AAMphi were isolated from peritoneal exudates of mice 2 days after third-degree thermal injuries affecting 15% total body surface area. CAMphi were generated from RMphi (peritoneal Mphi from normal mice) through stimulation with CpG DNA, a typical CAMphi inducer. RMphi did not polarize to CAMphi when they were cultured with AAMphi in a dual-chamber Transwell even when supplemented with CpG DNA. In addition, RMphi stimulated with CpG DNA did not convert to CAMphi when they were cultured with the culture fluids of AAMphi (AAMphi Culture-Sup). AAMphi Culture-Sup contained IL-6, IL-10, CCL17, PGE(2), and TGF-beta. Among these, CCL17 and IL-10 inhibited CAMphi generation. The ability of AAMphi Culture-Sup to inhibit CAMphi generation was eliminated when the Culture-Sup was treated with a mixture of mAbs directed against CCL17 and IL-10. These results indicate that CCL17 and IL-10 released from AAMphi inhibit CAMphi generation from RMphi stimulated with CpG DNA.  相似文献   

17.
Monensin, a highly selective sodium ionophore, inhibits vasopressin-stimulated water flow in toad urinary bladder pretreated with naproxen, an inhibitor of prostaglandin synthesis. Inhibition is partially dependent on the presence of sodium in the serosal medium, but not on serosal calcium. We have found that monensin does not inhibit water flow generated by forskolin, cyclic AMP, or isobutyl methyl xanthine (MIX); indeed, an enhancement of water flow was seen following cAMP and MIX, as well as following 0.2 microM forskolin. Our findings suggest that monensin uncouples the vasopressin-receptor-G protein-adenylate cyclase sequence at some early step, by a mechanism that remains unknown, but that may directly or indirectly involve intracellular sodium.  相似文献   

18.
Toxoplasma gondii invaded and proliferated in cultured human umbilical vein endothelial cells. Preincubation of the human umbilical vein endothelial cells with human rIFN-gamma induced a high degree of inhibition of T. gondii replication, with the effect being dose dependent. In order to try to elucidate the inhibitory mechanism, we tested the presence of several factors that are known to operate against intracellular parasites in other cell types. We found, by means of a competitive inhibitor, that L-arginine-dependent production of reactive nitrogen intermediates was not the cause of inhibition of T. gondii proliferation, thus contrasting with the inhibitory mechanism found in activated mouse macrophages. Furthermore, the inhibition of replication was not overcome by oxygen scavengers or by saturation of the system with tryptophan, suggesting that neither reactive oxygen intermediates nor the induction of tryptophan starvation was responsible.  相似文献   

19.
20.
The establishment of surrogate islet beta cells is important for the treatment of diabetes. Hepatocytes have a similar glucose sensing system as beta cells and have the potential to serve as surrogate beta cells. In this report, we demonstrate that infection of Hepa1-6 liver cells with a lentivirus expressing the human insulin cDNA results in expression and secretion of human insulin. Furthermore, we show that l-arginine at low levels of glucose significantly stimulates the release of insulin from these cells, compared to exposure to high concentration of glucose. The arginine-induced insulin release is via the production of nitric oxide, since treatment with N(G)-nitro-l-arginine, an inhibitor of nitric oxide synthase, blocks insulin secretion induced by l-arginine. These results indicate that nitric oxide plays a role in l-arginine-stimulated insulin release in hepatocytes expressing the human insulin gene, and provides a new strategy to induce insulin secretion from engineered non-beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号