首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC), mesoporous carbon (MPC), bamboo biochar (BBC) and oak wood biochar (OBC)) were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the ππ electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively), compared to MPC (73.00 mg/g) and AC, indicating an ineffective potential for phenol removal from water.  相似文献   

2.
The effects of surface properties of Saccharomyces cerevisiae strains 468/pGAC9 and 468 on adhesion to polyethyleneimine (PEI) and/glutaraldehyde (GA) pre-treated cotton (CT), polyester (PE), polyester + cotton (PECT), nylon (NL), polyurethane foam (PUF), and cellulose re-enforced polyurethane (CPU) fibers were investigated. Process parameters (circulation velocity, pH, ionic strength, media composition and surfactants) were also examined. 80%, 90%, and 35% of the cells were adsorbed onto unmodified CT, PUF, and PE, respectively. PEI-GA pre-treated CT and alkali treated PE yielded 25% and 60% cell adhesion, respectively. Adsorption rate (Ka) ranged from 0.06 to 0.17 for CT and 0.06-0.16 for PE at varied pH. Adhesion increased by 15% in the presence of ethanol, low pH and ionic strength, and decreased by 23% in the presence of yeast extract and glucose. Shear flow and 1% Triton X-100 detached 62% and 36% nonviable cells from PE and CT, respectively, suggesting that cell immobilization in fibrous-bed bioreactors can be controlled to optimize cell density for long-term stability.  相似文献   

3.
Morphologically, glutaraldehyde-fixed and -dried intermediate filaments (IFs) appear flexible, and with a width of 8-12 nm when observed by electron microscopy. Sometimes, the filaments are even unraveled on the carbon-coated grid and reveal a protofilamentous architecture. In this study, we have used atomic force microscopy to further investigate the morphology of IFs in a more physiological environment. First, we have imaged hydrated glutaraldehyde-fixed IFs adsorbed to a graphite support. In such conditions, human vimentin and desmin IFs appeared compact with a height of 5-8 nm and revealed either a beading repeat or a helical morphology. Second, we have analyzed the architecture of hydrated vimentin, desmin, and neurofilament IFs adsorbed to mica, graphite, and hydrophilic glass without the presence of fixative. On mica, vimentin IFs had a height of only 3-5 nm, whereas desmin IFs appeared as 8-10 nm height filaments with a helical twist. Neurofilaments were 10-12 nm in height with a pronounced 30-50 nm beading along their length. On graphite, the different IFs were either not adsorbing properly or their architecture was modified yielding, for example, broad, flattened filaments. Finally, hydrophilic glass was the surface which seemed to best preserve the architecture of the three IFs, even if, in some cases, unraveled vimentin filaments were observed on this support. These results are straightening the idea that mature IFs are dynamic polymers in vitro and that IFs can be distinguished from each others by their physicochemical properties.  相似文献   

4.
RNA loop-loop complexes are motifs that regulate biological functions in both prokaryotic and eukaryotic organisms. In E. coli, RNAI, an antisense RNA encoded by the ColE1 plasmid, regulates the plasmid replication by recognizing through loop-loop interactions RNAII, the RNA primer that binds to the plasmidic DNA to initiate the replication. Rop, a plasmid-encoded homodimeric protein interacts with this transient RNAI-RNAII kissing complex. A surface plasmon resonance (SPR)-based biosensor was used to investigate this protein-nucleic acid ternary complex, at 5 degrees C, in experimental conditions such as the protein binds either to the loop-loop complex while it dissociates or to a saturated stable RNAI-RNAII surface. The results show that RNAI hairpin dissociates from the RNAII surface 110 times slower in the presence of Rop than in its absence. Rop binds to RNAI-RNAII with an on-rate of 3.6 x 10(6) M(-1) s(-1) and an off-rate of 0.11 s(-1), resulting in a binding equilibrium constant equal to 31 nM. A Scatchard-plot analysis of the interaction monitored by SPR confirms a 1:1 complex of Rop and RNAI-RNAII as observed for non-natural Rop-loop-loop complexes.  相似文献   

5.
M E Bayer  I Morrison  R Cherry 《FEBS letters》1984,175(2):329-332
The rotational diffusion of bacteriophage epsilon 15 was measured before and after virus adsorption to outer membrane vesicles of the host Salmonella anatum. The virus capsid was labeled with eosin isothiocyanate, and the decay of transient dichroism following dye excitation by pulses of plane-polarized light was measured. From the data, the rotational diffusion constant of the unadsorbed virion and its hydrodynamic diameter were estimated and found to be consistent with electron microscopic measurements of the capsid dimensions. Addition of outer membrane vesicles of S. anatum to the virus suspension revealed the immobilization of the virus particles on the membrane surface.  相似文献   

6.
To evaluate the conformation of reduced HEL, the monoclonal antibodies HyC1 and HyC2, which recognize different conformational epitopes on native hen egg lysozyme (HEL), were used, and the kinetics of their interactions with native HEL, S-1,2-dicarboxyethylated HEL (DCE-HEL), and carboxymethylated Cys6 and Cys127 HEL (CM6,127-HEL) were assessed using surface plasmon resonance. Although their association rate constants differed 105-fold, their dissociation rate constants were essentially the same, suggesting that DCE-HEL and CM6,127-HEL possess conformations similar to that of native HEL when they bind antibodies. We considered that the ratio of the association rate constant of reduced HEL to native HEL represents the proportion of the native format determinant in equilibrium. Reduction of the Cys6-Cys127 disulfide bond would transform the epitope recognized by HyC1 into a non-native conformation similar to that of DCE-HEL. We show that monoclonal antibodies provide a sensitive tool for evaluation of the structural and hydrodynamic changes of proteins.  相似文献   

7.
A great challenge in functional or interaction proteomics is to map protein networks and establish a functional relationship between expressed proteins and their effects on cellular processes. These cellular processes can be studied by characterizing binding partners to a "bait" protein against a complex background of other molecules present in cells, tissues, or biological fluids. This so-called ligand fishing process can be performed by combining surface plasmon resonance biosensors with MS. This combination generates a unique and automated method to quantify and characterize biomolecular interactions, and identify the interaction partners. A general problem in chip-based affinity separation systems is the large surface-to-volume ratio of the fluidic system. Extreme care, therefore, is required to avoid nonspecific adsorption, resulting in losses of the target protein and carry-over during the affinity purification process, which may lead to unwanted signals in the final MS analysis and a reduction in sensitivity. In this study, carry-over of protein and low-molecular weight substances has been investigated systematically and cleaning strategies are presented. Furthermore, it is demonstrated that by the introduction of colloidal particles as a capturing and transporting agent, the recovery yield of the affinity-purified ligand could be improved nearly twofold.  相似文献   

8.
The binding of insulin to the external surface of phosphatidylcholine liposomes as a function of the temperature, the surface curvature, and the composition of lipids was studied. The amount of the saturated binding of insulin to liposomes was assessed by gel-filtration chromatography. The binding of insulin to small unilamellar vesicles was highly dependent upon the temperature, favoring low temperatures. As the temperature increased, there was a distinct temperature range where the binding of insulin to small unilamellar vesicles decreased. The temperature ranges for dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) small unilamellar vesicles were found to be 10–20°C and 21–37°C, respectively. These temperature ranges were quite different from the reported ranges of the gel → liquid crystalline phase transition temperatures (Tc) for DMPC or DPPC small unilamellar vesicles. In contrast to other proteins, the amount of insulin bound to DMPC and DPPC small unilamellar vesicles was negligible at or above the upper limit of the above temperature ranges, and increased steadily to 6–7 μmol of insulin per mmol of phospholipid as the temperature decreased to or below the lower limit of these temperature ranges. On the other hand, the binding of insulin to the large multilamellar liposomes cannot be detected at all temperatures tested. The affinity of insulin to neutral phosphatidylcholine small unilamellar vesicles appeared to be related to the surface curvature of the liposomes, favoring the liposomes with a high surface curvature. Furthermore, the amount of insulin bound to small unilamellar vesicles decreased as the content of the cholesterol increased. The presence of 10% molar fraction of phosphatidic acid did not appear to affect the binding of insulin to small unilamellar vesicles. However, the presence of 5% molar fraction of stearylamine in DPPC small unilamellar vesicles increased the amount of bound insulin as well as the extent of aggregation of liposomes. The results of the present study suggest that the interstitial regions of the acyl chains of phospholipids between the faceted planes of small unilamellar vesicles below Tc may be responsible for the hydrophobic interaction of insulin and small unilamellar vesicles. The tight binding of insulin to certain small unilamellar liposomes could lead to an overestimation of the true amount of insulin encapsulated in liposomes, if care is not taken to eliminate the bound insulin during the procedure of encapsulating insulin in liposomes.  相似文献   

9.
Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.  相似文献   

10.
Tetrapyridylporphyrins containing four chloro(2,2′-bipyridine)platinum(II) complexes attached at the meta (3-H2TPtPyP) and para (4-H2TPtPyP) positions of the peripheral pyridine ligands were synthesized and their interaction with DNA investigated. The compounds were isolated in the solid state and characterized by means of spectroscopic and analytical techniques. According to molecular simulations, the two isomers exhibit contrasting structural characteristics, consistent with a saddle shape configuration for 3-H2TPtPyP and a planar geometry for 4-H2TPtPyP. Surface plasmon resonance studies were carried out on the interaction of the complexes with calf thymus DNA, revealing a preferential binding of 3-H2TPtPyP, presumably at the DNA major grooves.  相似文献   

11.
Co‐administration of several drugs in multidrug therapy may alter the binding of each to human serum albumin (HSA) and hence their pharmacological activity. Thirty‐two frequently prescribed drug combinations, consisting of four fluoroquinolone antibiotics and eight competing drugs, have been studied using fluorescence and circular dichroism spectroscopic techniques. Competitive binding studies on the drug combinations are not available in the literature. In most cases, the presence of competing drug decreased the binding affinity of fluoroquinolone, resulting in an increase in the concentration of free pharmacologically active drug. The competitive binding mechanism involved could be interpreted in terms of the site specificity of the binding and competing drugs. For levofloxacin, the change in the binding affinity was small because in the presence of site II‐specific competing drugs, levofloxacin mainly occupied site I. A competitive interference mechanism was operative for sparfloxacin, whereas competitive interference as well as site‐to‐site displacement of competing drugs was observed in the case of ciprofloxacin hydrochloride. For enrofloxacin, a different behavior was observed for different combinations; site‐to‐site displacement and conformational changes as well as independent binding has been observed for various drug combinations. Circular dichroism spectral studies showed that competitive binding did not cause any major structural changes in the HSA molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
D. G. Russell 《Protoplasma》1994,181(1-4):191-201
Summary The protistan parasiteLeishmania is a dimorphic cell that survives as a motile promastigote in the insect digestive tract, and a non-motile, amastigote from within the phagolysosomal compartment of the vertebrate host's phagocytes. The surface ofLeishmania must interface with a range of differing environments and facilitate uptake of nutrients, whilst protecting the parasite from various host defence mechanisms. This review discusses the organization of the leishmanial cell, and the biology of its major surface constituents, the lipophosphoglycan and the surface proteinase, gp 63.  相似文献   

13.
The present study is aimed to characterize the electrostatic parameters of oil in water emulsion droplets composed of MCT (medium chain triglycerides), PL (phospholipids) and Poloxamer and containing increasing concentrations of the cationic lipid oleylamine (OA), in Hepes 20 mM pH 7.4. The initial zeta-potential data suggesting saturation of the droplet surface at high OA concentrations were completed by supplementary analysis: the distribution of the oleylamine within the droplet was determined by reacting the amino groups with the hydrophilic TNBS (trinitrobenzenesulfonic acid), the method being initially standardised with vesicles. In addition, surface potential and pH at the droplet surface were monitored by the pH-sensitive fluorophore 4-heptadecyl-7-hydroxycoumarin. Our results demonstrate that almost all the OA is localised and fully ionised at the droplet surface for all concentrations and that the observed plateau in the zeta-potential values obeys the Gouy-Chapman theory of ion condensation. It is also shown that the slipping plane separation as estimated by the Eversole-Boardman equation is higher that the expected values of 0.2 nm as a result of the relative position of the fluorophore and the outer boundary of the lipid interface thickness and the Poloxamer anchored at the interface only plays a minor role.  相似文献   

14.
Abstract: In the present work we describe several properties of the Ca2+-dependent binding of glutamate decarboxylase (GAD) to phosphatidylcholine-phosphatidylserine liposomes. The binding occurs very rapidly, is dependent on temperature in the range 23–37°C, is inhibited up to 35% by K+ in a concentration-dependent manner and is slightly increased when the dielectric constant of the medium is decreased by 3% ethanol. The association of GAD and liposomes is very firm, since EGTA displaces only 40% of the bound enzyme and Triton X-100 about 55%. Since apparently only part of the total GAD is able to bind to the liposomes and in a previous study two forms of GAD activity have been identified kinetically, we compared the activations by pyridoxal 5'-phosphate (PLP) of the soluble and the bound GAD, as well as their inhibition by PLP oxime- O -acetic acid. The bound GAD was activated 150–265% by 10−6 to 10−4 m -PLP, whereas the activation of GAD that remained soluble was only 65–110% in the same PLP concentration range. In the absence of PLP, the bound GAD was less inhibited by the PLP oxime- O -acetic acid than the soluble GAD, but the inhibition was similar when 0.1 m m -PLP was added. In contrast, activity of both the soluble and the bound GAD was totally blocked by aminooxyacetic acid. Endogenous PLP did not bind to liposomes under the experimental conditions inducing GAD binding. We conclude that the binding of GAD to negatively charged liposomes is primarily ionic. Furthermore, the GAD molecules that bind to the liposomes seem to be deficient in free PLP and therefore, are probably more susceptible to regulation by the coenzyme. These conclusions may be relevant to the hypothesis of a coupling between synthesis and release of GABA in inhibitory nerve endings.  相似文献   

15.
Microelectrophoretic studies of the binding of a number of commonly used hydrophobic amine drugs to liposomes demonstrated the existence of relatively large surface potentials associated with binding of the protonated forms of the drugs. A theoretical treatment based on Langmuir adsorption isotherms and the Gouy-Chapman theory of the diffuse double layer allows estimation of drug-binding constants from electrophoretic mobility data. Such constants allow calculation of the charge effects arising from drug binding in more complex membrane systems, and it is shown that shifts in the apparent Ca2+ affinity of the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum in the presence of hydrophobic amine drugs are readily explicable in terms of the electrostatic effects of drug binding.  相似文献   

16.
It is well documented that diffusion has generally a strong effect on the binding kinetics in the microtiter plate immunoassays. However, a systematic quantitative experimental evaluation of the microspot kinetics is still missing in the literature. Our work aims at filling this important gap of knowledge on the example of antigen binding to antibody microspots. A mathematical model was derived within the framework of two-compartment model and applied to the quantitative analysis of the experimental data obtained for typical antibody microspot assays. A strong mass-transport dependence of the antigen-antibody microspot kinetics was identified to be one of the main restrictions of this new technology. The binding reactions are slowed down in the microspot immunoassays by several orders of magnitude as compared with the corresponding well-stirred bulk reactions. The task to relax the mass-transport limitations should thus be one of the most important issues in designing the antibody microarrays. These limitations notwithstanding, the detection range of more than five orders of magnitude and the high sensitivity in the low femtomolar range were experimentally achieved in our study, demonstrating thus an enormous potential of this highly capable technology.  相似文献   

17.
Summary The importance of charged groups during phagocytic recognition of filamentous Cyanobacteria (Oscillatoria formosa andAnabaena spp.) by the stenophagic ciliatePseudomicrothorax dubius has been studied. Anionic and cationic domains are evenly and randomly distributed over the cyanobacterial surface, as demonstrated with scanning electron microscopy following labeling with colloidal gold (–) and colloidal gold coupled with poly-L-lysine (+). The phagocytosis ofOscillatoria was inhibited when filaments were treated with cationic reagents such as poly-L-lysine (pLL), FeCl3 and carbodiimide. In contrast elimination of cationic charges on theOscillatoria surface by treatment with poly-L-glutamic acid (pLGa) or colloidal gold did not affect phagocytosis. The effects of sequential treatment with pLL and pLGa demonstrated that pLL reduced phagocytosis of pLGa-pretreatedOscillatoria, whereas the pLGa restored phagocytosis of pLL-pretreated filaments. Scanning electron microscopy showed that pLL- or pLGa- treated filaments can still adsorb the oppositely charged colloidal gold particles on their surface. However, the treatment of filaments with pLL followed by pLGa prevented subsequent labeling with gold as well as with pLL-gold particles. Filaments ofAnabaena spp., which are not normally ingested byPseudomicrothorax, were also treated individually or sequentially with pLL and pLGa. None of these treatments, however, provoked phagocytosis ofAnabaena byPseudomicrothorax. We suggest that the surface charge alone does not play a crucial role in phagocytic recognition inPseudomicrothorax and that phagocytosis-specific molecules are implicated.  相似文献   

18.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

19.
Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.  相似文献   

20.
Tricyclic antidepressants and nontricyclic serotonin (5-hydroxytryptamine) uptake blockers monophasically inhibit [3H]imipramine binding in human platelets. Similarly, serotonin and tryptamine inhibit the binding of [3H]imipramine in the low micromolar range and with a pseudo-Hill coefficient near unity. Dissociation of the [3H]imipramine receptor complex in the presence of uptake inhibitors follows first-order kinetics with a half-life of approximately 60 min. Although serotonin and tryptamine do not decrease [3H]imipramine binding when added under equilibrium conditions, simultaneous addition of serotonin or tryptamine with serotonin uptake inhibitors decreases the rate of ligand-receptor dissociation in a concentration-dependent manner. These data suggest a common site of action for serotonin, which is the substrate of the transporter system, and of tryptamine, its nonhydroxylated analog. This hypothesis is supported by the identification of a high-affinity (Km = 0.55 microM), saturable, and temperature-dependent uptake of [3H]tryptamine in human platelets. Uptake of [3H]tryptamine was inhibited potently by imipramine and nontricyclic serotonin uptake inhibitors with a potency similar to that observed for [3H]serotonin uptake. These data support the hypothesis that in platelets, [3H]imipramine, tricyclic, and nontricyclic serotonin uptake inhibitors bind to a common recognition site that is associated with the serotonin transporter but that differs from the substrate recognition site of the carrier through which serotonin and tryptamine exert a heterotropic allosteric modulation on [3H]imipramine binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号